Charm production: constraints to transport models and charm diffusion coefficient with ALICE

Luuk Vermunt* (Universität Heidelberg), for the ALICE Collaboration

* luuk.vermunt@cern.ch

Open heavy-flavour production

Open heavy-flavour production plays a **unique role** in heavy-ion physics:

- Production restricted to early collision stages and retain a "memory" of their evolution through the QGP
- Good theoretical control on the production (perturbative QCD) and transport through the medium (diffusion treatment)
- Heavy quarks retain their flavour and mass identity; can be "tagged" by the measurement of heavy-flavour hadrons

A Large Ion Collider Experiment

ITS Charm-hadron analyses conducted in TPC the central barrel (|y| < 0.5), using: TOF Inner Tracking System VO Time Projection Chamber Time-of-Flight detector **V0** detectors Viel Contraction Charm measurements in Pb-Pb collisions: $D^0 \longrightarrow K^- \pi^+$ $D^+ \longrightarrow K^- \pi^+ \pi^+$ $D_s^+ \longrightarrow \varphi \pi^+ \longrightarrow K^+ K^- \pi^+$ $D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+$ $\Lambda_{c}^{+} \longrightarrow K_{S}^{0} p \longrightarrow \pi^{+} \pi^{-} p$ $c \rightarrow \mu^{\pm} X$ Data samples used: Pb-Pb 5.02 TeV 2015: *L*_{int} ~ 13 μb (MB) 2018: *L*_{int} ~ 130 μb (0–10%) ~ 56 μb (30–50%) Muon Spectrometer (for $c \rightarrow \mu^{\pm} X$) 2 Xe-Xe 5.44 TeV 2017: $\mathcal{L}_{int} \sim 0.3 \,\mu b$ (MB) Luuk Vermunt | Quark Matter 2022 | 07/04/2022

Nuclear modification factor: non-strange D

- Increasing suppression (for p_T > 3 GeV/c) for more central collisions due to **increasing density**, **size**, and **lifetime** of the medium
- Because of interplay of many different effects, model comparison required to interpret these single D-meson measurements

Nuclear modification factor: D_s^+ and Λ_c^+

Hint of hierarchy, $R_{AA}(\Lambda_c^+) > R_{AA}(D_s^+) > R_{AA}(D)$ for $p_T > 4$ GeV/*c* in most central collisions \rightarrow Indication of modified hadronisation mechanisms; interplay with radial flow?

Azimuthal anisotropies: D mesons

Positive D v_2 and v_3 in 0–10% and 30–50%

 \rightarrow Charm participates in collective expansion

Positive $D_s^+ v_2$ in 2 < p_T < 8 GeV/*c* in 30–50% with **significance of 6.40**

 \rightarrow Current uncertainties too large to draw conclusion about potential difference w.r.t. non-strange D

Charm-quark transport models

Most charm-quark **transport models** able to describe both the R_{AA} and v_2

- \rightarrow Use comparison to understand which physics effects are relevant
- \rightarrow Use comparison to estimate the spatial diffusion coefficient

TAMU: PRL 124, 042301 (2020) LIDO: PRC 98, 064901 (2018) PHSD: PRC 93, 034906 (2016) DAB-MOD: PRC 96, 064903 (2017) Catania: PRC 96, 044905 (2017) MC@sHO: PRC 91, 014904 (2015) LBT: PLB 777 (2018) 255-259 POWLANG: EPJC 75 (2015) 3, 121 LGR: EPJC 80 (2020) 7, 671 *R*_{AA}: JHEP 01 (2022) 174 *v*₂: PLB 813 (2021) 136054 Luuk Vermunt | Quark Matter 2022 | 07/04/2022

Radiative energy loss important to describe intermediate and high p_{T}

 \rightarrow Small impact on low $p_{\rm T}$ region

LIDO: PRC 98, 064901 (2018) LGR: EPJC 80 (2020) 7, 671 R_{AA}: JHEP 01 (2022) 174 v₂: PLB 813 (2021) 136054

Hadronisation via recombination important to describe low and intermediate p_T

 \rightarrow D meson "picks up" the v_2 of the light quark

PHSD: PRC 93, 034906 (2016) POWLANG: EPJC 75 (2015) 3, 121 DAB-MOD: PRC 96, 064903 (2017) PRC 96, 064903 (2017) PRC 96, 064903 (2017) PRC 96, 064903 (2017) PRC 97, 034906 (2016) PRC 93, 034906 (2017) PRC 93, 034906 (2017) PRC 93, 034906 (2017) PRC 94, 064903 (2017) PRC 95, 064903 (2017) PRC 96, 0700 (2017)

Spatial diffusion coefficient

Constraining the spatial diffusion coefficient via the **data-to-model agreement**

 \rightarrow Using R_{AA} (with $\chi^2/\text{ndf} < 5$) and v_2 (with $\chi^2/\text{ndf} < 2$) non-strange D measurements

→ TAMU, MC@sHQ, LIDO, LGR, and Catania "selected" → $1.5 < 2\pi D_s T_c < 4.5$ → $\tau_{charm} \simeq 3-8$ fm/c

What do leptons from HF decays teach us?

 R_{AA} of HF decay μ^{\pm} and e^{\pm} (see backup) **reasonably well described** by transport models \rightarrow Some tension for PHSD (no radiative e-loss) with forward muons, but describes e^{\pm} at midrapidity

MC@sHQ: PRC 89, 014905 (2014) PHSD: PRC 93, 034906 (2016)

What do D_s^+ and Λ_c^+ teach us?

Charm-strange to probe hadronisation

The D_s^+/D^0 ratio is **higher** in 2 < p_T < 8 GeV/*c* in 0–10% (30–50%) Pb-Pb by **2.3** σ (**2.4** σ)

Described by models including strangeness enhancement and fragmentation + recombination

The Λ_c^+/D^0 ratio is **enhanced** in $4 < p_T < 8$ GeV/*c* for central Pb–Pb wrt pp collisions by **3.70**

 \rightarrow Also seen for baryon-to-meson ratios with **light-flavour particles**

 \rightarrow Data is described by TAMU. The shapes of the Catania and SHMc predictions agree qualitatively

 \rightarrow Data is described by TAMU. The shapes of the Catania and SHMc predictions agree qualitatively

Can the enhancement be explained as an **interplay between radial flow & recombination**, i.e. a different redistribution of p_T between baryons and mesons?

TAMU: PRL 124, 042301 (2020) Catania: PRC 96, 044905 (2017) SHMc: JHEP 07 (2021) 035 Luuk Vermunt | Quark Matter 2022 | 07/04/2022

New and precise estimates by ALICE at low and high multiplicities

Hint of flat trend with multiplicity

New and precise estimates by ALICE at low and high multiplicities

Hint of flat trend with multiplicity

→ Reproduced by fragm+recomb and SHM predictions (including new charm-baryon states for the latter)

SHMc: JHEP 07 (2021) 035

New and precise estimates by ALICE at low and high multiplicities

Hint of flat trend with multiplicity

→ Reproduced by fragm+recomb and SHM predictions (including new charm-baryon states for the latter)

Is the p_T differential Λ_c^+/D^0 enhancement just a consequence of **radial flow and recombination**?

TAMU: PRL 124, 042301 (2020) Catania: PRC 96, 044905 (2017) SHMc: JHEP 07 (2021) 035 Monash: EPJC 74 (2014) 3024

Statistical hadronisation of charm

SHMc (charm quarks fully thermalised in the QGP)

→ Distributed into hadrons at phase boundary according to **thermal** weights

Measured yields of **open-charm mesons compatible** with SHMc

Measured yield of Λ_c^+ underestimated

 \rightarrow Described in case of an enhanced charm-baryon resonance spectrum

Conclusion

ALICE performed precise heavy-flavour measurements with Run 2 Pb-Pb data

- \rightarrow Charm mesons **down to** $p_T = 0$
- \rightarrow Charm-strange mesons and charm baryons to low p_{T}
 - \rightarrow No $p_{\rm T}$ integrated $\Lambda_{\rm c}^+/{\rm D}^0$ enhancement with multiplicity
- \rightarrow Beauty production also accessed, via non-prompt D mesons and e[±] from beauty decays

X. Peng, 06/04/21, 12:10

What did we learn so far?

- \rightarrow Charm quarks interact with medium via **collisional and radiative processes**
- \rightarrow Charm quarks participate in the collective motion, i.e. are **thermalised**
- \rightarrow Charm quarks hadronise via **recombination** (in addition to fragmentation)

What's next?

Wide ALICE upgrade program for LHC Run 3 and 4, crucial for HF measurements

- \rightarrow Continuous readout **at 50 kHz interaction rate** for Pb–Pb collisions
- \rightarrow **Improved tracking precision** by a factor 3–6
 - \rightarrow New silicon Inner Tracking System

Run 3: ITS2 (installed in 2021)

Run 4: ITS3 (**TDR in preparation**)

A. Alkin, 07/04/21, 15:40 S. Scheid, 07/04/21, 16:00

The near future will bring us **new** and **more precise** HF measurements down to **low** p_T , stay tuned...

Thank you for your attention!

Additional slides

Experimental techniques: HF leptons

- Partial reconstruction via semileptonic decays $\rightarrow c, b \rightarrow e^{\pm}X$ $\rightarrow c, b \rightarrow \mu^{\pm}X$ $\downarrow 10^{5}$ ALICE
- Exploiting
 - \rightarrow identification of e^\pm at midrapidity
 - \rightarrow tracking of μ^{\pm} at forward rapidity
 - \rightarrow subtraction of hadron contamination and non-HF leptons
 - \rightarrow separation of charm and beauty ${\rm e}^{\pm}$ viia impact parameter d_0

Experimental techniques: azimuthal anisotropies

 v_2 measured with the **Scalar-Product** (SP) method

$$\nu_n \{\text{SP}\} = \left\langle \left\langle \mathbf{u}_n \cdot \mathbf{Q}_n^{A*} \right\rangle \right\rangle / \sqrt{\frac{\left\langle \mathbf{Q}_n^A \cdot \mathbf{Q}_n^{B*} \right\rangle \left\langle \mathbf{Q}_n^A \cdot \mathbf{Q}_n^{C*} \right\rangle}{\left\langle \mathbf{Q}_n^B \cdot \mathbf{Q}_n^{C*} \right\rangle}}$$

$$\mathbf{Q}_{n} = \left(\Sigma_{k=0}^{N_{\text{tracks}}} \cos(n\varphi_{k}), \Sigma_{k=0}^{N_{\text{tracks}}} \sin(n\varphi_{k})\right)$$
$$\mathbf{u}_{n} = \left(\cos(n\varphi_{D}), \sin(n\varphi_{D})\right)$$

 Since per-particle identification of D mesons not possible, two component (signal, background) fit of v_n vs. invariant mass performed:

$$v_n^{\text{tot}}(M) = \frac{S}{S+B}(M) \cdot v_n^{\text{signal}} + \frac{B}{S+B}(M) \cdot v_n^{\text{bkg}}(M)$$

PLB 813 (2021) 136054

Luuk Vermunt | Quark Matter 2022 | 07/04/2022

22

Azimuthal anisotropies (v_3)

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}p_{T}} = \frac{1}{2\pi}\frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}\left\{1 + \sum_{n=1}^{\infty}\nu_{\mathrm{n}}\cos[n(\varphi - \Psi_{\mathrm{n}})]\right\}$$

Event-by-event fluctuations in initial distributions of participant nucleons in the overlap region

• Sensitive to the shear viscosity over entropy density ratio, η/s .

third harmonic coefficient

triangular flow

PLB 813 (2021) 136054

 $v_3 = \langle \cos[3(\varphi - \Psi_3)] \rangle$

Luuk Vermunt | Quark Matter 2022 | 07/04/2022

Heavy versus light/charm versus beauty

24

$p_{\rm T}$ < 3-4 GeV/*c*: **Mass ordering**.

- $v_2(\Upsilon) \leq v_2(\mathbf{e} \leftarrow \mathbf{b}) \approx v_2(\mathbf{J}/\Psi) < v_2(\mathbf{D}) < v_2(\pi^{\pm})$
- → Interplay between anisotropic flow and isotropic expansion of system (**radial flow**).
- $4 < p_T < 8 \text{ GeV}/c$: **No. constituent quark scaling**.
 - $v_2(J/\Psi) < v_2(D) \approx v_2(\pi^{\pm}) \ (< v_2(p))$
 - $v_2(\Upsilon) < v_2(e \leftarrow b)$
 - → Supports hypothesis of hadronisation via **quark** coalescence.
- $p_{\rm T}$ > 8 GeV/*c*: **Compatible coefficients**.
 - $v_2(\mathbf{J}/\Psi) \approx v_2(\mathbf{D}) \approx v_2(\pi^{\pm}) \quad (\approx v_2(\mathbf{p}))$
 - → Supports hypothesis of similar **path-length dependence** of in-medium energy loss.

PLB 813 (2021) 136054 JHEP 10 (2020) 141 PRL 123, 192301 (2019) PRL 126, 162001 (2021)

Charm-hadron flow carried by light quarks

Test of n-quark scaling and recombination mechanisms

→ quark flow obtained by intepolating $_{\sim 0.2}$ ALICE $v_n(J/\Psi)$ and $v_n(\pi)$

 \rightarrow assuming:

- $v_n^{\pi}(p_T^{\pi}) = 2 * v_n^q(p_T^{\pi}/2)$ $v_n^{D}(p_T^{D}) = v_n^q(p_T^q) + v_n^{c}(p_T^{c})$
- → Good description of D⁰ flow when light quark carries a large fraction (i.e. $p_T^q/p_T^D = 0.4$) of D meson p_T

Perturbative QCD calculations describe reasonably well the measured v_2 , "confirming"

- the quadratic path length dependence of radiative energy loss;
- the expected mass dependence due to the **dead-cone effect**.

	Collisional en. loss	Radiative en. loss	Coalescence	Hydro	nPDF	
CUJET 3.1	\checkmark		×		\checkmark	
DREENA-A	\checkmark	\checkmark	×		×	
SCET _{M,G}	\checkmark		×	×	\checkmark	soft-collinear effective theory

JHEP 01 (2022) 174

Heavy versus light/charm versus beauty

Perturbative QCD calculations describe reasonably well the measured R_{AA} , "confirming" •0.25 the quadratic path length dependence of rachative energy loss; 30-50%

• 0.2 the expected mass dependence due to the **dead**-cone effect.

JHEP

0.15	Collisional en. loss	Radiative en. los ^{g,G}	Coalescer	nce ^{0.15}	Hydro	nPDF	
COJJET 3.1			×	0.1	\checkmark		appoint expansion model
D. BEENA-A	\checkmark		×	0.05	\checkmark	×	
SCET _{M,G}	\checkmark		×	0	×	\checkmark	soft-collinear effective theory
1 (2022) 174				0.05		Luuk	Vermunt Quark Matter 2022 07/04/2022

30

28

Heavy flavour decay leptons

 R_{AA} of HF decay muons and electrons reasonably well described by most transport models \rightarrow Some tension for PHSD (no radiative e-loss) with forward muons, but describes e[±] at midrapidity

μ[±]: PLB 819 (2021) 136437 e[±]: PLB 804 (2020) 135377 MC@sHQ: PRC 89, 014905 (2014) PHSD: PRC 93, 034906 (2016)

Djordjevic: PRC 92, 024918 (2015) BAMPS: JPG 42 (2015) 11, 115106

TAMU: PLB 735 (2014) 445-450

POWLANG: EPJC 75 (2015) 3, 121 Luuk Vermunt | Quark Matter 2022 | 07/04/2022

Charm-quark transport models: ingredients

	Collisional en. loss	Radiative en. loss	Coalescence	Hydro	nPDF
TAMU		×		\checkmark	\checkmark
LIDO		\checkmark	\checkmark	\checkmark	\checkmark
PHSD		×	\checkmark	\checkmark	\checkmark
DAB-MOD		\checkmark		\checkmark	×
Catania		×		\checkmark	\checkmark
MC@sHQ+EPOS	\checkmark	\checkmark		\checkmark	\checkmark
LBT	\checkmark	\checkmark		\checkmark	
POWLANG+HTL		X		\checkmark	
LGR		\checkmark	\checkmark	\checkmark	

But more importantly: different **implementations** and **input parameters**.