Thermal radiation and direct-photon production in Pb–Pb and pp collisions with dielectrons in ALICE

29th QM | Kraków, Poland
4–10 Apr 2022

Jerome Jung
for the ALICE collaboration
Motivation

Dielectron production

Several sources of correlated electron pairs in Pb−Pb:
→ Separation via invariant mass
Motivation

Dielectron production

Several sources of correlated electron pairs in Pb–Pb:
→ Separation via invariant mass

At higher masses (1.1 < \(m_{ee} < 2.7\) GeV/c\(^2\)):
- Correlated semi-leptonic decays of heavy flavour (HF)
- Quark-gluon plasma (QGP)

→ Suppression of HF production

→ Temperature of the QGP
Motivation

Dielectron production

Several sources of correlated electron pairs in Pb–Pb:

→ Separation via invariant mass

At higher masses ($1.1 < m_{ee} < 2.7 \text{ GeV}/c^2$):

- Correlated semi-leptonic decays of heavy flavour (HF)
- Quark-gluon plasma (QGP)

At lower masses ($0.14 < m_{ee} < 0.9 \text{ GeV}/c^2$):

- Pseudoscalar and vector mesons ($\pi^0, \eta, \rho, \omega, \phi$)
- Hadron-gas (HG) phase

→ Temperature of the HG

Modification of the ρ spectral function

Motivation

Dielectron production

Several sources of correlated electron pairs in Pb–Pb:

→ Separation via invariant mass

At higher masses ($1.1 < m_{ee} < 2.7 \text{ GeV}/c^2$):
- Correlated semi-leptonic decays of heavy flavour (HF)
- Quark-gluon plasma (QGP)

At lower masses ($0.14 < m_{ee} < 0.9 \text{ GeV}/c^2$):
- Pseudoscalar and vector mesons ($\pi^0, \eta, \rho, \omega, \phi$)
- Hadron-gas (HG) phase

At vanishing mass ($m_{ee} \to 0$):
- Equivalent to real-photon measurement

Yield

Dielectron spectrum

Y

$m_{ee} (\text{GeV}/c^2)$
Motivation

Dielectron production

Several sources of correlated electron pairs in Pb–Pb:
→ Separation via invariant mass

At higher masses ($1.1 < m_{ee} < 2.7 \text{ GeV}/c^2$):
- Correlated semi-leptonic decays of heavy flavour (HF)
- Quark-gluon plasma (QGP)

At lower masses ($0.14 < m_{ee} < 0.9 \text{ GeV}/c^2$):
- Pseudoscalar and vector mesons ($\pi^0, \eta, \rho, \omega, \phi$)
- Hadron-gas (HG) phase

At vanishing mass ($m_{ee} \rightarrow 0$):
- Equivalent to real-photon measurement

Measurements in pp:
- Vacuum baseline for Pb–Pb studies (HF, direct photons)
- Search for new phenomena in high-multiplicity (HM) events or at low momenta

Dielectron production in pp at $\sqrt{s} = 13$ TeV
Minimum bias (MB)

- Analysis of the full Run 2 data set → Poster by H. Murakami: Session 2 T13

 MB: a factor of 3.8 & HM: a factor of 4.4

- Updated hadronic cocktail estimation with independent measurements at $\sqrt{s} = 13$ TeV
 → π^0 and η mesons in the same multiplicity intervals → Poster by J. König: Session 1 T14_2

- MB ($p_{T,ee} > 1$ GeV/c) well described by hadronic sources
Analysis of the full Run 2 data set
→ Poster by H. Murakami: Session 2 T13

Increase of statistics compared to previous publication:
MB: a factor of 3.8 & HM: a factor of 4.4

Updated hadronic cocktail estimation
with independent measurements at $\sqrt{s} = 13$ TeV

→ π^0 and η mesons in the same multiplicity intervals
→ Poster by J. König: Session 1 T14_2

→ Larger cocktail uncertainties due to multiplicity
dependence of HF production

Within uncertainties no sign of thermal radiation in
HM pp events
Direct photons in pp
→ Important baseline for Pb–Pb
→ Search for possible thermal contributions in HM pp events

Kroll-Wada formula f_{dir} used for extraction:

$$f_{\text{fit}} = r \times f_{\text{dir}} + (1 - r) \times f_{\text{LF}} + f_{\text{HF}}$$

Direct-photon fraction r:

$$r = \frac{\gamma_{\text{dir}}^*}{\gamma_{\text{incl}}^*} \quad m_{\text{ee}} \to 0$$

- Direct-photon fraction r as the only free parameter
- Spectrum fitted above pion mass
→ Large reduction of systematic uncertainties compared to real-photon measurement
Direct-photon fraction in pp at $\sqrt{s} = 13$ TeV

Comparison to published results and theory

Significant reduction of statistical and systematic uncertainties in new analysis

→ Direct-photon fraction in MB in good agreement with pQCD calculations

→ Measurement in HM compatible with MB results

Poster by H. Murakami: Session 2 T13
Dielectron production in central Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

Invariant-mass spectrum

Comparison to hadronic cocktail, including:

- N_{coll}-scaled HF measured in pp at $\sqrt{s} = 5.02$ TeV

 \rightarrow Vacuum baseline

Data at the edge of the uncertainty of hadronic cocktail

However: HF contribution is expected to be modified

 \rightarrow CNM and hot medium effects
Dielectron production in central Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

Invariant-mass spectrum

Comparison to hadronic cocktail, including:

- N_{coll}-scaled HF measured in pp at $\sqrt{s} = 5.02$ TeV

 Phys. Rev. C 102 (2020) 055204

 → Vacuum baseline

- Include measured R_{AA} of $c/b \rightarrow e^\pm$

 → Modified-HF cocktail

Intermediate-mass region (IMR) from $1.1 < m_{ee} < 2.7$ GeV/c^2

→ Consistent with HF suppression & therm. radiation from QGP

Indication for an excess at lower mass

→ Compatible with thermal radiation from HG
Direct-photons fraction in Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

Direct-photon fraction r extracted with same method as in pp

$$ R_\gamma = \frac{1}{1-r} = \frac{Y_{\text{incl}}}{Y_{\text{decay}}} $$

First measurements in Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV:

- Good agreement with real-photon method
 Talk by M. Danisch: Parallel Session T13

- Smaller syst. uncertainties at low p_T compared to real photons

- Virtual-photon measurement limited by statistics

Figure corrected after the conference
Direct-photons Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

Direct-photon yield – Effective-temperature extraction

Direct-photon yield

- Constructed with inclusive-photon spectrum from PCM
 \[\gamma^{\text{dir}} = \gamma^{\text{inc}}(\text{PCM}) \times r \]

- Data consistent with pQCD with a hint for an excess above pQCD expectation at low p_T

Figure corrected after the conference
Direct-photons Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

Direct-photon yield – Theory comparison

Data compared to models including thermal & pQCD photons:

Thermodynamic models:
- **C. Gale**: Radiation from all stages of the collision including the pre-equilibrium phase
- **H. van Hees**: Therm. radiation from QGP & hadr. many body calc. and meson-exchange reactions
- **P. Dasgupta**: Thermal photons with fluctuations in the initial-state

Microscopic transport model:
- **O. Linnyk**: Direct photons via PHSD

\rightarrow Models including thermal radiation tend to overestimate the data at lower p_T
Direct-photons Pb–Pb at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

Experimental comparison overview

Real-photon measurement in 0-20% Pb–Pb at $\sqrt{s_{\text{NN}}} = 2.76$ TeV

$\rightarrow T_{\text{eff}} = 297 \pm 12(\text{stat.}) \pm 41(\text{syst.})$ MeV

New ALICE results:

Virtual-photon measurement in central Pb–Pb at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

\rightarrow Need to decrease uncertainties first in order to extract a temperature

Figure corrected after the conference
Direct-photons Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

Experimental comparison overview

Real-photon measurement in 0-20% Pb–Pb at $\sqrt{s_{NN}} = 2.76$ TeV
\[T_{\text{eff}} = 297 \pm 12{\text{(stat.)}} \pm 41{\text{(syst.)}} \text{ MeV} \]

New ALICE results:
Virtual-photon measurement in central Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV
\[\rightarrow \text{Need to decrease uncertainties first in order to extract a temperature} \]

Consistent with a universal scaling behaviour of direct-photon yield with charged-particle multiplicity postulated by PHENIX

Figure corrected after the conference
Excess yield = Data – cocktail (w/o ρ contribution)

Invariant mass allows to separate different thermal contributions:

\(m_{ee} < 1 \text{ GeV}/c^2\) : Contributions from Hadron Gas
\(m_{ee} > 1 \text{ GeV}/c^2\) : QGP radiation

→ Current understanding of the cocktail limits the interpretation of the data

→ Develop cocktail independent approach
DCA\textsubscript{ee} analysis in central Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

Separation of prompt and non-prompt sources based on their decay topology:

\Rightarrow DCA\textsubscript{ee}(thermal) < DCA\textsubscript{ee}(HF)

Gives access to measurements of:

\Rightarrow Thermal radiation at low DCA\textsubscript{ee}

\Rightarrow Suppression of HF production at high DCA\textsubscript{ee}

Distance-of-closest approach (DCA):

$$DCA_{ee} = \sqrt{\frac{DCA_1^2 + DCA_2^2}{2}}$$
DCA\textsubscript{ee} analysis in central Pb–Pb at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

Intermediate-mass region

First DCA\textsubscript{ee} analysis in Pb–Pb at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

Comparison to N_{coll}-scaled cocktail:

- Beauty dominates the spectrum at high DCA\textsubscript{ee}
- Charm more prominent at low DCA\textsubscript{ee}

→ Data below HF expectation
 → Clear indication of HF suppression
DCA_{ee} analysis in central Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

DCA template fit

Extraction of prompt thermal signal via template fits:

- Beauty contribution fixed via separate fit at high DCA_{ee}
 \[\text{bb}: \quad 0.74 \pm 0.24(\text{stat.}) \pm 0.12(\text{syst.}) \quad (\text{w.r.t. } N_{\text{coll}} \text{ scaling}) \]

- Simultaneous fit of charm and prompt contribution
 \[\text{c\bar{c}}: \quad 0.43 \pm 0.40(\text{stat.}) \pm 0.22(\text{syst.}) \quad (\text{w.r.t. } N_{\text{coll}} \text{ scaling}) \]
 \[\text{prompt}: \quad 2.64 \pm 3.18(\text{stat.}) \pm 0.29(\text{syst.}) \quad (\text{w.r.t. R. Rapp}) \]
DCA\textsubscript{ee} analysis in central Pb–Pb at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

DCA spectra – template fits

Fit result

Extraction of prompt thermal signal via template fits:

- Beauty contribution fixed via separate fit at high DCA\textsubscript{ee}

 bb^-: $0.74 \pm 0.24\text{(stat.)} \pm 0.12\text{(syst.)} \text{ (w.r.t. } N_{\text{coll}} \text{ scaling)}$

- Simultaneous fit of charm and prompt contribution

 $c\bar{c}$: $0.43 \pm 0.40\text{(stat.)} \pm 0.22\text{(syst.)} \text{ (w.r.t. } N_{\text{coll}} \text{ scaling)}$

 prompt: $2.64 \pm 3.18\text{(stat.)} \pm 0.29\text{(syst.)} \text{ (w.r.t. R. Rapp)}$

Results in agreement with:

- Charm suppression
- Thermal contribution in the order of Rapp/PHSD

Method independent of hadronic cocktail:

- Smaller syst. uncertainties
- More statistics enables the extraction of a thermal dielectron yield in the IMR
Outlook

Dielectron production in Run 3 and 4

New Pb–Pb data taking at the end of this year

New ITS and upgrade of the TPC to a GEM based readout system:

- Increase the readout rate in Pb–Pb by a factor 100 → 13 nb\(^{-1}\) MB Pb–Pb planned

- Improve the vertex pointing resolution by a factor 3-6 → Improves topological separation (DCA\(_{ee}\))

→ Talks by A. Alkin: Parallel Session T15
Summary

Analysis of full Run 2 dataset of pp at $\sqrt{s} = 13$ TeV
→ Significant increase in statistics & reduction of syst. uncertainties
→ Extraction of direct-photon fraction in MB & HM events

Measurement of dielectron production in central Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV
→ First measurement of direct-photon yield
→ Limits for thermal radiation
→ First DCA$_{ee}$ analysis in Pb–Pb to separate thermal radiation & heavy-flavor background
Backup
ALICE apparatus
Low-mass dielectrons

Inner Tracking System
- Vertexing
- Tracking
- PID

Time Projection Chamber
- Tracking
- PID

Time of Flight
- PID

V0 at forward rapidity
- MB & HM event triggering
- Multiplicity estimation
- Centrality determination

<table>
<thead>
<tr>
<th>System</th>
<th>Analysed luminosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb–Pb $\sqrt{s_{NN}} = 5.02$ TeV</td>
<td>10 μb$^{-1}$</td>
</tr>
<tr>
<td>pp $\sqrt{s} = 13$ TeV</td>
<td>X.XX nb$^{-1}$</td>
</tr>
</tbody>
</table>
Dielectron production in semi-central Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

Cocktail weighting method

Parametrisation of measured of HF electron R_{AA}
→ Contains CNM effects & energy loss in the medium

Disentangle CNM effects using EPS09

CNM effects & energy-loss affect pair production differently

<table>
<thead>
<tr>
<th>CNM</th>
<th>Energy loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affects whole pair</td>
<td>Affects each electron independently</td>
</tr>
</tbody>
</table>

$w_1 = \frac{R_{AA}(p_T,e^+) + R_{AA}(p_T,e^-)}{2}$
$w_2 = R_{AA}(p_T,e^+) \times R_{AA}(p_T,e^-)$

→ Total weight $w = w_1 \times w_2$ applied as a function of m_{ee} & $p_{T,ee}$

However: Correction with large uncertainties from HFe R_{AA} & EPS09
Assumes same suppression for charm & beauty
Dielectron production in central Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

Cocktail comparison – Pair-momentum spectra at low masses

Excess yield: $p_{T,ee} < 4$ GeV/c dominated by thermal radiation

$p_{T,ee} > 4$ GeV/c more prompt photons expected

Inclusion of HF modification crucial to describe $p_{T,ee}$ shape
Dielectron production in semi-central Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV
Cocktail comparison – Pair-momentum spectra at low masses

0.14 < m_{ee} < 0.5 GeV/c²

0.5 < m_{ee} < 1.1 GeV/c²

Excess yield: $p_{T,ee} < 4$ GeV/c dominated by thermal radiation

$p_{T,ee} > 4$ GeV/c more prompt photons expected
Comparison to binary scaled HF
→ Data overall in good agreement

Inclusion of HF modification in the cocktail
→ Data above cocktail expectation
Direct-photons Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

Direct-photon fraction extraction

Direct-photon fraction r extracted with same method as in pp: (Kroll-Wada function f_{dir})

$$f_{\text{fit}} = r \times f_{\text{dir}} + (1 - r) \times f_{\text{LF}} + f_{\text{HF}}$$
Dielectron production in central Pb–Pb at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

Nuclear modification factor

Indication of HF suppression in the IMR in Pb–Pb collisions
Dielectron production in central Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

Nuclear modification factor

Signs of suppression as a function of $p_{T,ee}$ in Pb–Pb collisions
Dielectron production in semi-central Pb–Pb at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

Cocktail comparison – Invariant-mass spectrum

First measurement of the dielectron production in semi-central collisions

Compared to different hadronic cocktails:

Binary N_{coll} scaled HF measurement \rightarrow vacuum baseline

Input: HF measurement from pp at $\sqrt{s} = 5.02$ TeV \rightarrow Phys. Rev. C 102 (2020) 055204

Data on the edge of the uncertainty of hadronic expectations \rightarrow Tension in the region $0.5 < m_{ee} < 1.1$ GeV/c^2

However: HF contribution is expected to be modified \rightarrow CNM and hot medium effects
Dielectron production in semi-central Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

Cocktail comparison – Invariant-mass spectrum

First measurement of the dielectron production in semi-central collisions

Compared to different hadronic cocktails:

- Binary N_{coll} scaled HF measurement → vacuum baseline
- Weighted HF based R_{AA} of $c/b \to e^\pm$ → to model a HF suppression

Inclusion of HF modification improves the overall description

Compared to theory calculations including thermal radiation

However: Therm. signal in the order of syst. uncertainties of the modified cocktail
Excess yield = Data – cocktail (w/o ρ contribution)

Invariant mass allows to separate different thermal contributions

$m_{ee} < 1 \text{ GeV}/c^2$: Contributions from Hadron Gas

$m_{ee} > 1 \text{ GeV}/c^2$: QGP radiation

→ Current understanding of the cocktail limits the understanding of the data

→ Develop cocktail independent approach
DCA\textsubscript{ee} analysis in central Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

Cocktail-scaled DCA spectra – J/ψ region

Well suited as a control region:

- Mixture of prompt & non-prompt sources
- J/ψ production well constrained

Data well described by DCA\textsubscript{ee} templates scaled with the hadronic cocktail
Dielectron production in central PbPb at 5.02 TeV

Scaled DCA spectra – Intermediate-mass region

Inclusion of weighting with HFe R_{AA}:
- Better description of high DCA$_{ee}$ values
- Spectrum consistent with theory calculations for thermal radiation by R. Rapp

Prompt signal ➔ Non-prompt signal