Quark-like and gluon-like contributions using jet charge in pp and PbPb collisions with the CMS detector

Olga Evdokimov (UIC) for the CMS Collaboration
Jet quenching in QGP

Jet Tomography for QGP medium:
What happens if partons traverse a hot, dense colored medium?

In QGP:
- Jets are quenched...
 - Strong suppression in R_{AA}
 - Changes in the dijet p_T balance A_J
 - ...

Open questions remain:
- Detailed nature of jet-medium

Olga Evdokimov (University of Illinois at Chicago)
Jet quenching in QGP

Jet Tomography for QGP medium:
What happens if partons traverse a hot, dense colored medium?

In QGP:

- **Jets are quenched…**
 - Strong suppression in R_{AA}
 - Changes in the dijet p_T balance A_J
 - …

- **…and show significant energy reshuffling in PbPb vs pp**
 - Softening of jet fragmentation
 - Modifications of jet shapes
 - …

Open questions remain:

- Detailed nature of jet-medium interactions
- Flavor/color-charge dependence of parton-medium coupling
 - …

JHEP05(2018)006, CMS HIN-16-020

Olga Evdokimov (University of Illinois at Chicago)
What are the theory expectations?

In the weak coupling limit, the expected energy loss scales with corresponding color factor:

\[
\frac{dE_{\text{quark}}}{dx} / \frac{dE_{\text{gluon}}}{dx} = \frac{C_F}{C_A} = \frac{4}{9}
\]

Weak coupling models larger predict higher energy loss for gluons than quarks in QGP.
What are the theory expectations?

- In the strong coupling the Casimir scaling is expected to break down

\[\frac{dE_{\text{quark}}}{dx} / \frac{dE_{\text{gluon}}}{dx} = \left(\frac{C_F}{C_A} \right)^{1/3} \]

- Strong coupling models expect smaller differences in energy loss for quarks and gluons
What are the theory expectations?

- Quark jet fractions with different values of $r = C_A/C_F$:
 - PYQUEN: energy loss predictions for different values of C_A/C_F
 - Distinct trends for central/peripheral PbPb calculations
What are the experimental indications?

- Several experimental measurements could be interpreted as favoring higher energy loss for gluons.
- Others may indicate otherwise.
Quark-rich samples for color-charge studies

Inclusive jets vs. γ-jets: quark-rich samples to tests for color-charge effects

Changes of momentum flow OR change in q/g fractions?

Similar jet shape modification in central PbPb data: energy shift towards larger radii

Quarks vs. gluons:

- Changes of momentum flow OR change in q/g fractions?
- Similar jet shape modification in central PbPb data: energy shift towards larger radii

PRL 122(2019)152001

PLB 730 (2014) 243

<table>
<thead>
<tr>
<th>CMS</th>
<th>Cent. 0 - 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T^\gamma > 60$ GeV/c</td>
<td></td>
</tr>
<tr>
<td>anti-k_T jet $R = 0.3$</td>
<td></td>
</tr>
<tr>
<td>$p_T^{\text{jet}} > 30$ GeV/c</td>
<td></td>
</tr>
<tr>
<td>$\Delta \phi_{j_y} > 7\pi/8$</td>
<td></td>
</tr>
</tbody>
</table>

$|s_{NN}| = 5.02$ TeV

pp 27.4 pb$^{-1}$, PbPb 404 μb$^{-1}$
Jet charge observable

- **Jet Charge:**
 \[Q^\kappa = \frac{1}{(p_T^{jet})^\kappa} \sum q_i (p_T^i)^\kappa \]
 transverse momentum-weighted sum of the electric charges of jet constituents

- \(\kappa \): controls the sensitivity of \(Q^\kappa \) to low and high \(p_T \) tracks

- Average jet charge for different flavored jets show little dependence on jet \(p_T \) →

- Can be used to study color-charge effects of jet quenching
Jet charge – Analysis strategy

Jet Charge:

\[Q^\kappa = \frac{1}{(p_T^{jet})^\kappa} \sum q_i (p_T^i)^\kappa \]

- Kinematic selections:
 - Jets: PF, anti-\(k_T \), \(R = 0.4 \), \(p_T > 120 \text{ GeV} \), \(|\eta| < 1.6 \)
 - Tracks: \(p_T > 1, 2, 4, 5 \text{ GeV} \), \(|\eta| < 2.0 \)
 - \(\kappa = 0.3, 0.5, 0.7 \)

- Jet-track correlations are used for statistical extraction of jet-charge signal within \(R < 0.4 \) cone
- Incorporate *data-driven methods* for acceptance and underlying event corrections
- Measurements are *fully unfolded* for detector and background fluctuation effects
- Unfolded data are fit with Pythia MC templates to extract the quark- and gluon- like jet fractions
Jet charge – Analysis details

Prior Matrices for Background Unfolding

CMS Simulation Preliminary

Unfolding for background fluctuation effects:
- MC samples: PYTHIA6 (tune Z2); PYTHIA6* embedded into HYDJET

* Embedded jet sample rescaled to match up and down quark fractions in Pb

Data driven validation: η – reflection and random-cone

Olga Evdokimov (University of Illinois at Chicago)
Unfolding for detector acceptance and tracking efficiency:

- MC samples: PYTHIA6 (tune Z2); PYTHIA6* embedded into HYDJET

 * Embedded jet sample rescaled to match up and down quark fractions in Pb

- Validation: MC-based unfolding for detector and background effects performed in a single step
First AA jet charge measurements

- Fully-unfolded jet charge results for pp and PbPb events at 5 TeV
- MC-based templates describe data for all p_T, centrality and k bins

CMS

anti-k_T, $R = 0.4$ jets, $p_T^{jet} > 120$ GeV, $|\eta_{jet}| < 1.5$

$\kappa = 0.5$, track $p_T > 1$ GeV

pp 27.4 pb$^{-1}$, PbPb 404 μb$^{-1}$ (5.02 TeV)
Centrality and p_T dependence:

- No significant modifications observed in the extracted gluon-like jet fractions between the different PbPb centrality bins and pp results.
Extracted gluon-like jet fractions

- Constituent threshold and weight-scheme dependence:

- No significant modifications observed in the extracted gluon-like jet fractions between the different PbPb centrality bins and pp results.
Jet charge distribution width

- Centrality and p_T dependence of jet charge distribution widths:

 - No significant modifications observed in the measured widths between the different PbPb centrality bins and pp results

 - Width of the jet charge measurements well described by PYTHIA (unquenched)

Olga Evdokimov (University of Illinois at Chicago)
Jet charge: Model comparisons

- **PYQUEN:**
 - Collisional E-loss
 - Radiative E-loss

Both PYQUEN settings predict a decrease in the gluon jet fraction due to its larger color factor.

Corresponding increase in the jet charge width not observed in data.

Olga Evdokimov (University of Illinois at Chicago)
Future directions

- Dynamic jet charge: \(Q_{dyn}^i = \sum_{h \in i \text{-jet}} z_h^{k(z_h)} Q_h \)
- with a possible (simple) form of \(k(z_h) = \begin{cases} k_-, z_h < \xi_{cut} \\ k_+, z_h \geq \xi_{cut} \end{cases} \)
- Jet charge likelihood distributions are proposed as effective q/g discriminator

PRD 103 (2021) 074028
Summary and outlook

- **Jet charge**: is an established tool for flavor-tagging in HEP. Now, first jet charge measurements from AA collisions have been published by CMS for 5TeV PbPb (and pp) data.
- **Jet charge in AA**: jet charge distributions and extracted g- and q-like jet fractions show no significant modifications between different PbPb centrality bins and pp measurements.
- **Jet charge in theory**: Quenching modeling in PYQUEN leads to increase in the width of jet charge distribution, not present in data.
- **Outlook**: New charge-dependent observables could offer higher sensitivity for color-charge effects.

Graphs and Diagrams

- CMS pp 27.4 pb⁻¹ (5.02 TeV)
 - anti-kₜ, R=0.4 jets, pₜ > 120 GeV, ln₂⁻¹ < 1.5
 - κ = 0.5

- CMS PbPb 404 μb⁻¹ (5.02 TeV)
 - anti-kₜ, R=0.4 jets, pₜ > 120 GeV, ln₂⁻¹ < 1.5
 - κ = 0.5

- CMS PbPb 404 μb⁻¹ (5.02 TeV)
 - 0-10% PbPb
 - κ = 0.5

 - Jet Charge Standard Deviation [σ]
 - PYTHIA6
 - PYQUEN (Collisional)
 - PYQUEN (Radiational)
Back-up slides
Jet charge: different track p_T
Jet charge: different κ scales

CMS

\[\text{anti-} k_T \text{ } R = 0.4 \text{ jets, } p_T^{\text{jet}} > 120 \text{ GeV, } |\eta|_\text{jet} < 1.5 \quad \kappa = 0.3, \text{ track } p_T > 1 \text{ GeV} \quad \text{pp } 27.4 \text{ pb}^{-1}, \text{PbPb } 404 \mu \text{b}^{-1} \text{ (5.02 TeV)} \]

Fitting results
- Gluon
- Data
- Up quark
- Down quark
- Other flavors

\[\text{anti-} k_T \text{ } R = 0.4 \text{ jets, } p_T^{\text{jet}} > 120 \text{ GeV, } |\eta|_\text{jet} < 1.5 \quad \kappa = 0.7, \text{ track } p_T > 1 \text{ GeV} \quad \text{pp } 27.4 \text{ pb}^{-1}, \text{PbPb } 404 \mu \text{b}^{-1} \text{ (5.02 TeV)} \]