New insights on heavy flavor dynamics and hadronization in the small systems with CMS

Yousen Zhang for the CMS Collaboration
Rice University

Quark Matter 2022
Krakow, Poland
April 6, 2022
Observations in large systems

• QGP fluid in nucleus-nucleus collisions
 • Collective motions – elliptic flow (v_2) and ridges
 • Coalescence process – baryon enhancement
• ...

PLB 816 (2021) 136253

PRL 124 172301

arxiv:2112.08156
Observations in small systems

- Not expected at the beginning
 - Large and positive elliptic flow
 - Baryon enhancement
- …
Creation of tiny QGP?

- A small QGP droplet created – in-medium and final state effects
- Alternative explanations for collectivity:
 - Correlations established prior to collisions – initial state effects

![Diagram showing large nuclei on the left and small nucleon, low temperature (low energy density) on the right, with small nucleon, high density shown in the center.](image)
Explore the small system deeply

• If there are any in-medium effects
 • $\lambda_{m.f.p.} \ll L$
 • to test medium effects
 • Increase $\lambda_{m.f.p.}$
 • decrease L
Explore the small system deeply

• We need probes sensitive to
 • Initial correlations
 • Relative system size – $\lambda_{m.f.p.}/L$

• Light flavor particles (q)
 • Can be created anytime – lose the sensitivity to initial correlations
 • $\lambda_{m.f.p.}^q$ may be always small compared to system size
 • Hard to disentangle *initial and final state effects*
Explore the small system deeply

- We need probes sensitive to
 - Initial correlations
 - Relative system size – $\lambda_{m.f.p.}/L$

- Heavy flavor quarks (HF or Q)
 - Mostly created in initial stages
 - Evolve in the entire evolution of the system
 - $\lambda_{m.f.p.}^Q \gg \lambda_{m.f.p.}^q$
 - Sensitive to both initial correlations and in-medium effects!

p Pb

HF

Light quark

time
Observables we are interested in

- HF flavor v_2
 - Open charm/bottom quarks, charmonia and bottomonia
- v_2 signal and its dependence on multiplicity (relative system size)
- Collisions geometry and dynamics, v_2 *driven by eccentricity*?
Open HF collectivity in pPb

- First time in pPb collisions – vanishing v_2 for b hadrons via non-prompt D^0

- Indication of flavor hierarchy between charm and bottom hadrons at low p_T

PLB 813 (2021) 136036
Open HF collectivity in pPb

- First time in pPb collisions – vanishing v_2 for b hadrons via non-prompt D^0
- Indication of flavor hierarchy between charm and bottom hadrons at low p_T
Open HF collectivity in pPb

- Comparisons with CGC calculations – show consistency within large uncertainties

- Precision measurements in the future – HL-LHC with CMS MTD
Collectivity in even smaller system

- First measurement of prompt $D^0 v_2$ in high multiplicity pp collisions
- Indication of positive v_2 signal at $2 < p_T < 4$ GeV
- v_2 of prompt D^0 comparable with that of light hadrons

Multiplicity is defined in the same way as in pPb
System size dependence

- Positive v_2 is observed in high multiplicity events
- Non-zero v_2 of prompt D^0 mesons diminish towards low-multiplicity regimes
- v_2 of prompt D^0 in pp collisions comparable to that in pPb collisions with similar multiplicity under large uncertainty
Opportunities at HL-LHC

• A new timing detector with timing resolution ~30ps
 • PID for Kaon up to 2.5 GeV
 • PID for proton up to 5 GeV
Opportunities at HL-LHC

- Uncertainties significantly reduced, from Run 2 to Run 4
 - A factor of 3 increase on luminosity, 186 nb\(^{-1}\) => 0.6 pb\(^{-1}\)
 - Better signal discriminating power, no PID => good PID
- CMS talk by Andre Govinda Stahl Leiton, 7 Apr 2022, 15:20

CMS-TP-2021-037

![CMS Phase-2](image1)

![CMS Phase-2](image2)
Opportunities in the future

- Insights from **LARGE** systems – fluctuations of elliptic flow
 - \(v_2 = \kappa \epsilon_2 \) where \(\epsilon_2 \) is the eccentricity of the collision geometry
 - *Event-by-event* fluctuations of \(\epsilon_2 \) lead to fluctuations of \(v_2 \)
 - \(\kappa \) can also fluctuate *event-by-event* if the system is *small*
 - Multi-particle correlation sensitive to fluctuations
 - \(v_2 \{4\}^2 \approx v_2^2 - \sigma^2, \quad v_2 \{2\}^2 \approx v_2^2 + \sigma^2 \)
Origin of v_2 fluctuations

- Insights from **LARGE** systems – fluctuations of elliptic flow
 - If fluctuations only from ε_2,
 \[
 \frac{v_2\{4\}(pT)}{v_2\{2\}(pT)} = \frac{v_2\{4\}}{v_2\{2\}} = \frac{\varepsilon_2\{4\}}{\varepsilon_2\{2\}}
 \]
 - If k can fluctuate,
 \[
 \frac{v_2\{4\}(pT)}{v_2\{2\}(pT)} = \frac{v_2\{4\}}{v_2\{2\}} + \delta(pT)
 \]
 - Full equation for v_2 fluctuations, see PRC 95 (2017) 044901
 - Initial ε_2 fluctuations vs. final state (in-medium) k fluctuations?
\(\nu_2 \) via multi-particle correlations

- **First time to measure charm \(\nu_2 \) using **multiple particle correlator**
- Correlator
 - \(\ll 2' \gg = \ll e^{i2(\phi(D_0^0)_1 - \phi^{ref}_2)} \gg \)
 - \(\ll 4' \gg = \ll e^{i2(\phi(D_0^0)_1 + \phi^{ref}_2 - \phi^{ref}_3 - \phi^{ref}_4)} \gg \)
 - \(\nu_2 \{4\} \) and \(\nu_2 \{2\} \) can be calculated from these correlator
- More info in PRC 83 (2011) 044913
Fluctuations of v_2

- Expected ordering between $v_2\{2\}$ and $v_2\{4\}$, $v_2\{4\} < v_2\{2\}$
Fluctuations of v_2

• The fluctuations of D^0 is comparable with charged particles – fluctuations are from ϵ_2 dominately
Fluctuations across different system size

- $v_2\{4\}/v_2\{2\}$ for charm sectors are almost the same across different centrality classes – similar findings of charged particles – fluctuations almost from initial geometry
Fluctuations towards smaller systems

• Indication of splitting between charged particles and charm sectors – hint of fluctuations on energy loss towards smaller system

• Possible findings in pPb and pp collisions if medium effects are dominant?
Future opportunities via HF productions

• If there are any in-medium effects
 • Hadronization and its dependence on multiplicity – possible baryon enhancement for high multiplicity events?
Summary and outlook

• Evident charm collectivity in pPb collisions and indications of charm flow in pp collisions
• Elliptic flow signal diminishes towards lower event activity
• Hint of energy loss fluctuations in peripheral PbPb collisions
• Future opportunities with CMS-MTD
Backup
Opportunities at HL-LHC

• A new timing detector with timing resolution 30ps
 • Barrel Timing Layer: scintillating crystals and SiPM device
 • Endcap Timing Layer: Low Gain Avalanche Detector
• Both Langevin processes and the processes of radiational energy loss describe the tendency but not quantitatively – data put strong constraints on theoretical models (PRC 102 (2020) 024906)
Models

• Both Langevin processes and the processes of radiational energy loss describe the tendency but not quantitatively – data put strong constraints on theoretical models (PRC 102 (2020) 024906)
Opportunities in the future

- Zhang et al. predict large v_2 for Υ and prompt J/ψ based on CGC
- Vanishing v_2 for Υ in pPb and PbPb – not expect large v_2 in pPb intuitively based on in-medium effects
- CMS talk by Kisoo Lee, 6 Apr 2022, 15:20