Measurements of Λ_c and $X(3872)$ production in PbPb for the studies of charm hadronization with CMS

Jing Wang (MIT)
for the CMS Collaboration

29th International Conference on Ultrarelativistic Nucleus Nucleus Collisions
Kraków, Poland

April 7th, 2022

The MITHIG’s work is supported by US DOE-NP
In-medium Hadronization is Important

From quarks to hadrons

- Hadronization: Important ingredient to the phenomenology of the observed R_{AA}, v_2
- Heavy quarks: flavor conservation in QGP ($m_Q \gg T_{QGP}$)
 - Ideal probe of the in-medium hadronization mechanism
In-medium Hadronization is Complicated

Fragmentation (High-\(p_T\))

- Universality of fragmentation

Coalescence (Low-\(p_T\))

- Instantaneous assumption
 - Instantaneous coalescence model (ICM)
 - Resonance recombination model (RRM)
- Parameters (thermal quark \(m_q\), width parameter, global normalization, …)

We are not sure about:

QGP
In-medium Hadronization is Complicated

- \(H_{AA} = R_{AA}^{H}/R_{AA}^{Q} \) directly exhibits hadronization effects

- Dramatically different hadronization effects in the models using different mechanisms and ways of implementing coalescence

- Lead to poor constraints on hot medium interaction effects
Study Coalescence with Baryons

• Coalescence more significant for baryons with 3 valence quarks
• Baryon to meson ratio Λ_c / D is essential to study hadronization
• Λ_c Reconstruction: $\Lambda_c \rightarrow pK\pi$ (Branching ratio $\sim 6.2\%$)
Λ_c Signals

pp

![Graph for pp collisions showing the distribution of Λ_c signals.]

- **Data**: Measured values
- **Signal + Background**: Estimated values
- **Background**: Calculated values

PbPb

![Graph for PbPb collisions showing the distribution of Λ_c signals.]

- **Data**: Measured values
- **Signal + Background**: Estimated values
- **Background**: Calculated values

Legend

- **5 < p_T < 6 GeV/c**
- **|y| < 1**
- **Cent. 0-100%**

CMS

- **38 nb⁻¹ (5.02 TeV pp)**
- **44 µb⁻¹ (5.02 TeV PbPb)**

References

- CMS (2020) PLB 803 (2020) 135328
• PYTHIA8 underestimates Λ_c/D^0 in 5-20 GeV

Λ_c in pp Collisions (1/4)
Λ_c in pp Collisions (2/4)

- PYTHIA8 underestimates Λ_c/D^0 in 5-20 GeV
- Color reconnection enhances the ratio
 - String formation between other partons than leading color
 - Significant in pp due to MPI

PLB 803 (2020) 135328
\(\Lambda_c \) in pp Collisions (3/4)

- PYTHIA8 underestimates \(\Lambda_c/D^0 \) in 5-20 GeV
- Color reconnection enhances the ratio
 → String formation between other partons than leading color
 → Significant in pp due to MPI
- **Solid line**: Partonic coalescence in pp as well

![Graph showing the ratio of \(\Lambda_c^+/\Lambda_c^0 \) to \(D^0/D^+ \) versus p_T (GeV/c)]

PbPb 44 \(\mu b^{-1} \), pp 38 nb\(^{-1} \) (5.02 TeV)

Global uncertainty
pp: 20%

PLB 803 (2020) 135328
• PYTHIA8 underestimates Λ_c/D^0 in 5-20 GeV

• Color reconnection enhances the ratio
 \rightarrow String formation between other partons than leading color
 \rightarrow Significant in pp due to MPI

• Solid line: Partonic coalescence in pp as well

• Dashed line: SHM + Feed-down from more excited charm baryon states than PDG list predicted by Relativistic Quark Model (RQM)
• Comparable Λ_c/D^0 in PbPb and pp collisions in $10 < p_T < 20$ GeV
\[\Lambda_c \] in PbPb Collisions (2/2)

- Higher precision and wider kinematic analysis is ongoing with latest dataset
 - 2017 pp: 3 < \(p_T \) < 30 GeV
 - 2018 PbPb: 6 < \(p_T \) < 40 GeV

Figure:

- CMS Collaboration
- Data points for \(|y| < 1 \)
- Global uncertainty: pp: 20%, PbPb: 31%

Data Points:

- 2015 PbPb
- 2017 pp: 3 - 30 GeV
- 2018 PbPb: 6 - 40 GeV

Legend:

- PbPb 44 \(\mu b^{-1} \), pp 38 nb\(^{-1} \) (5.02\, TeV)
- Data: Cent. 0-100%

References:

- PLB 803 (2020) 135328
Study Coalescence with Exotic Hadrons

How about one more quark? $\rightarrow X(3872)$
X(3872) in Heavy-ion Collisions

Not that simple: the inner structure of X(3872) affects its production in HIC

Tightly bound
Small radius

Compact four quark state

Loosely bound
Large radius

D-\bar{D}^* hadron molecule

Tetraquark

r_{4q} \approx r_{cc} \approx 0.3 \text{ fm}

\bar{u} \bar{c}

\bar{D}^* \bar{c}

\bar{D} \bar{u}

r_{\text{mol}} \text{ as large as } 5 \text{ fm}
X(3872) in HIC (1/2): Coalescence

- Coalescence with particles in HIC \rightarrow Enhance X(3872)

Coalescence probability depends on X(3872) inner structure
X(3872) in HIC (2/2): Breakup

- Breakup by comoving particles \Rightarrow Suppress X(3872)
- Coalescence with particles in HIC \Rightarrow Enhance X(3872)

Dissociation probability depends on X(3872) inner structure
Proton-proton collisions

$LHCb$

$pp\ \sqrt{s} = 8\ TeV$

$p_T > 5\ GeV/c$

$X(3872)/\psi(2S)$

PRL 126 (2021) 092001

X(3872) in High-Multiplicity pp Collisions
X(3872) in High-Multiplicity pp Collisions

- Breakup by comoving particles \rightarrow Suppress X(3872)

- Destroyed by comoving particles due to smaller binding energy than $\psi(2S)$?

PRL 126 (2021) 092001
X(3872) in Heavy-ion Collisions

- Breakup by comoving particles \Rightarrow Suppress X(3872)

Proton-proton collisions

Heavy-ion collisions

Even higher multiplicity

LHCb

$pp \sqrt{s} = 8$ TeV
$p_T > 5$ GeV/c

PbPb

Breakup by comoving particles

PRL 126 (2021) 092001
X(3872) in Heavy-ion Collisions

- Breakup by comoving particles \Rightarrow Suppress X(3872)
- Coalescence with particles in HIC \Rightarrow Enhance X(3872)

![Graph showing the ratio of X(3872) to ψ(2S) in PbPb collisions](image)

- LHCb
- pp, $\sqrt{s} = 8$ TeV
- $p_T > 5$ GeV/c

$\frac{BR_{X(3872)}(3872) \rightarrow J/\psi \pi^+ \pi^-}{BR_{\psi(2S)}(\psi(2S) \rightarrow J/\psi \pi^+ \pi^-)}$

PRL 126 (2021) 092001

Jing Wang (MIT), CMS Charm Hadronization, Quark Matter (Kraków, Poland), 2022.4.7
X(3872) Signals

- First evidence of X(3872) production in heavy ion collisions!
 - Statistical significance \(~ 4.2\sigma\)

After BDT cut

CMS Inclusive

\[\sigma_{X(3872)} = 4.7 \text{ MeV/c}^2 \]

1.7 nb\(^{-1}\) (PbPb 5.02 TeV)

\[15 < p_T < 50 \text{ GeV/c} \]

\[\sqrt{s} < 1.6, \text{ Cent. 0-90\%} \]

\[m_{J/\psi \pi \pi} (\text{GeV/c}^2) \]

1.7 nb\(^{-1}\) (PbPb 5.02 TeV)

15 < \(p_T\) < 50 GeV/c

\[\sqrt{s} < 1.6, \text{ Cent. 0-90\%} \]

\[\sigma_{X(3872)} = 4.7 \text{ MeV/c}^2 \]

PRL 128 (2022) 032001
$X(3872)/\psi(2S)$ Ratio in PbPb

\[
\frac{\rho_{\text{PbPb}}}{\rho_{\text{pp}}} = \frac{N_{X(3872)}}{N_{\psi(2S)}}
\]

- $X(3872)$ to $\psi(2S)$ ratio
 \[\rho_{\text{PbPb}} = 1.08 \pm 0.49 \text{ (stat.)} \pm 0.52 \text{ (syst.)}\]

PRL 128 (2022) 032001
X(3872)/ψ(2S) Ratio in PbPb

- Indication of ρ enhancement in PbPb w.r.t to pp
- Better precision needed to draw conclusion

$\rho_{pp,PbPb}^{(X(3872)\to J/\psi\pi\pi)} = \frac{N_{X(3872)}^{(PbPb)}}{N_{\psi(2S)}^{(PbPb)}}$

CMS

Prompt

$|y| < 1.6, 0-90\%$

- pp (7 TeV)
 $|y| < 1.2$ (CMS)
- pp (8 TeV)
 $|y| < 0.75$ (ATLAS)

PRL 128 (2022) 032001
Callback

- Breakup by comoving particles \rightarrow Suppress $X(3872)$
- Coalescence with particles in HIC \rightarrow Enhance $X(3872)$

$\sigma_{X(3872)} / \sigma_{\psi(2S)}$ vs. $N_{\text{VELO tracks}}$

- LHCb
 - pp $\sqrt{s} = 8$ TeV
 - $p_T > 5$ GeV/c

$X(3872)/\psi(2S)$

- Prompt

PRL 126 (2021) 092001
X(3872)/ψ(2S) Ratio in PbPb

Coalescence seems to play important role in PbPb

$$\rho_{\text{PbPb}} = 1.08 \pm 0.49\text{ (stat.)} \pm 0.52\text{ (syst.)}$$

PRL 126 (2021) 092001
X(3872)/ψ(2S) Ratio in Different Systems

Coalescence seems to play important role in PbPb

$\rho_{\text{PbPb}} = 1.08 \pm 0.49 \text{ (stat.)} \pm 0.52 \text{ (syst.)}$

LHCb

$pp \sqrt{s} = 8 \text{ TeV}$

$p_T > 5 \text{ GeV/c}$

$X(3872)/\psi(2S)$

Coalescence with particles in LHC

PRL 126 (2021) 092001

Breakup by comoving particles

ρ\text{PbPb} = 1.08 ± 0.49 (stat.) ± 0.52 (syst.)
Theoretical calculation (I)

X(3872) production vs. centrality

- Higher multiplicity: Large system
- Lower multiplicity: Smaller system

Breakup

Coalescence
Theoretical calculation (II)

X(3872) production vs. centrality

AMPT model

- **Instantaneous coalescence model (ICM)**
 - **Molecule**: decrease at peripheral
 - Higher coalescence rate in large system
 - **Tetraquark**: relatively flat vs. centrality
 - Decreasing numbers of available $c\bar{c}$ vs. increasing chances of small spatial separation

- **Pb–Pb @ 2.76 TeV**
 - X_{3872}
 - Molecular
 - Tetraquark

Higher multiplicity

- Large system

Lower multiplicity

- Smaller system

PRL 126 (2021) 012301
TAMU model \(\text{EPJA 57 (2021) 122} \)

- Thermal-rate equation framework, focusing on hadronic phase
- Yield (molecule) \(<\) Yield (tetraquark)
 - Tetraquark: Mostly produced in hadronization in QGP transition region
 - Molecule: Regeneration in hadronic medium stage dominates
- Different from ICM

\[
\text{Yield (molecule)} < \text{Yield (tetraquark)}
\]

\[
\Rightarrow \text{Tetraquark: Mostly produced in hadronization in QGP transition region}
\]

\[
\Rightarrow \text{Molecule: Regeneration in hadronic medium stage dominates}
\]

\[
\text{TAMU model}
\]

\[
\text{Thermal-rate equation framework, focusing on hadronic phase}
\]

\[
\text{Yield (molecule)} < \text{Yield (tetraquark)}
\]

\[
\Rightarrow \text{Tetraquark: Mostly produced in hadronization in QGP transition region}
\]

\[
\Rightarrow \text{Molecule: Regeneration in hadronic medium stage dominates}
\]

\[
\text{Different from ICM}
\]

\[
\text{TAMU model}
\]

\[
\text{Thermal-rate equation framework, focusing on hadronic phase}
\]

\[
\text{Yield (molecule)} < \text{Yield (tetraquark)}
\]

\[
\Rightarrow \text{Tetraquark: Mostly produced in hadronization in QGP transition region}
\]

\[
\Rightarrow \text{Molecule: Regeneration in hadronic medium stage dominates}
\]

\[
\text{Different from ICM}
\]
Summary

- Study charm in-medium hadronization by baryons and exotic hadrons in CMS

- Λ_c measured in pp and PbPb collisions
 - PYTHIA8 underestimates Λ_c/D^0 in pp
 - CR, coalescence and feed-down from more excited baryons can enhance Λ_c/D^0 in pp
 - Analysis using larger dataset is ongoing

- First evidence of $X(3872)$ in heavy-ion collisions
 - Indication of strong coalescence in PbPb
 - Discriminate nature of exotic hadrons
Thanks for your attention!
Back up

Thanks for your attention!
Heavy-ion data in CMS

<table>
<thead>
<tr>
<th>Run</th>
<th>Collision</th>
<th>Energy</th>
<th>Lumi</th>
<th>Scale to pp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>Pb-Pb</td>
<td>2.76 TeV</td>
<td>0.17 nb⁻¹</td>
<td>7.5 pb⁻¹</td>
</tr>
<tr>
<td>2013</td>
<td>p-Pb</td>
<td>5.02 TeV</td>
<td>0.035 pb⁻¹</td>
<td>7.4 pb⁻¹</td>
</tr>
<tr>
<td>2015</td>
<td>p-p</td>
<td>5.02 TeV</td>
<td>28 pb⁻¹</td>
<td>28 pb⁻¹</td>
</tr>
<tr>
<td>2015</td>
<td>Pb-Pb</td>
<td>5.02 TeV</td>
<td>0.55 nb⁻¹</td>
<td>24 pb⁻¹</td>
</tr>
<tr>
<td>2016</td>
<td>p-Pb</td>
<td>8.16 TeV</td>
<td>0.18 pb⁻¹</td>
<td>38 pb⁻¹</td>
</tr>
<tr>
<td>2017</td>
<td>Xe+Xe</td>
<td>5.44 TeV</td>
<td>6.0 µb⁻¹</td>
<td>0.1 pb⁻¹</td>
</tr>
<tr>
<td>2017</td>
<td>p-p</td>
<td>5.02 TeV</td>
<td>316 pb⁻¹</td>
<td>316 pb⁻¹</td>
</tr>
<tr>
<td>2018</td>
<td>Pb-Pb</td>
<td>5.02 TeV</td>
<td>1.7 nb⁻¹</td>
<td>74 pb⁻¹</td>
</tr>
<tr>
<td>Run 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>p-p</td>
<td>5.5 / 8.8 TeV</td>
<td>300 / 100 pb⁻¹</td>
<td>300 / 100 pb⁻¹</td>
</tr>
<tr>
<td>~</td>
<td>Pb-Pb</td>
<td>5.5 TeV</td>
<td>6.2 nb⁻¹</td>
<td>268 pb⁻¹</td>
</tr>
<tr>
<td>2024</td>
<td>p-Pb</td>
<td>8.8 TeV</td>
<td>0.6 pb⁻¹</td>
<td>126 pb⁻¹</td>
</tr>
<tr>
<td></td>
<td>O-O / p-O</td>
<td>7 / 9.9 TeV</td>
<td>0.5 / 0.2 nb⁻¹</td>
<td></td>
</tr>
<tr>
<td>Run 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td>p-p</td>
<td>5.5 / 8.8 TeV</td>
<td>300 / 100 pb⁻¹</td>
<td>300 / 100 pb⁻¹</td>
</tr>
<tr>
<td>~</td>
<td>Pb-Pb</td>
<td>5.5 TeV</td>
<td>6.8 nb⁻¹</td>
<td>294 pb⁻¹</td>
</tr>
<tr>
<td>2029</td>
<td>p-Pb</td>
<td>8.8 TeV</td>
<td>0.6 pb⁻¹</td>
<td>126 pb⁻¹</td>
</tr>
</tbody>
</table>
\(\Lambda_c \) in PbPb Collisions: Theoretical Model

PbPb @ 5.02 TeV (0-20%)

TAMU model
- Uncertainty: variation of reaction rate width
• Higher precision and wider kinematic analysis is ongoing with latest dataset
 ➔ 2017 pp: 3-4 GeV ~ 6.6σ
 ➔ 2018 PbPb: 6-8 GeV ~ 5σ
A Brief Intro to X(3872)

• 2003: X(3872), aka $\chi_{c1}(3872)$, discovered by Belle

• Today: Internal structure is still under debate
 Possible interpretations:
 ➡ Tetraquark: Compact four quark state
 ➡ D-\Dbar* hadron molecule: $X(3872) \approx D(1875)\Dbar^*(2007)$
 ➡ Hybrid: mixed molecule-charmonium state

• All interpretations can explain measured mass/decay width
 ⇒ Any way to distinguish these models?
X(3872) Reconstruction

- X(3872) and ψ(2S) fully reconstructed with hadronic decay chain $J/\psi(\mu\mu)\pi\pi$
- Di-muon trigger sample in PbPb collisions at 5 TeV collected by CMS

![Diagram of X(3872) and ψ(2S) decay chains](image)

- Much higher background

- Boosted Decision Tree method is used to optimize the kinematic selections

![Graph of $M_{J/\psi,\pi^+\pi^-}$ vs Candidates/(1 MeV/c^2)](image)
Combinatorial Background Suppression

- Kinematic variables have discrimination power between signal and background, but not very effective

- 5 variables
 - Secondary vertex probability
 - πp_T imbalance
 - Slow πp_{T2}
 - Opening angle between J/ψ and π: ΔR_1, ΔR_2

- Additional cut on $Q = m_{\mu\mu\pi} - m_{\mu\mu} - m_{\pi\pi}$
Separate Nonprompt Component

- **Inclusive:**
 - ✔ **Prompt** c-quark fragmentation
 - ✗ **Nonprompt** b-hadron decays

- l_{xy}
 - Pseudo-proper decay length
 - Separate nonprompt with l_{xy}

\[
l_{xy} = \frac{L_{xy} \cdot m}{|p_T|}
\]
b-enrich Method

- **Inclusive:**
 - ✔ **Prompt** c-quark fragmentation
 - ✗ **Nonprompt** b-hadron decays

- **b-enriched sample:**
 - Pure nonprompt in $l_{xy} > 0.1$ mm
b-enrich Method

- **Inclusive**:
 - ✔ Prompt c-quark fragmentation
 - ✗ Nonprompt b-hadron decays

- **b-enriched sample**:
 - ➡ Pure nonprompt in $l_{xy} > 0.1\text{ mm}$
 - ➡ Cross-check with l_{xy} template fit

![Graph showing CMS inclusive data and b-enriched (l$_{xy}$ > 0.1 mm) data with fits and pull values.](image-url)

PRL 128 (2022) 032001
Result: $X(3872)$ in PbPb

\[
R_{AA} = \frac{N_{pp} X(3872)}{N_{pp} X(3872)} = \frac{\rho_{PbPb}}{\rho_{pp}} \cdot \frac{N_{PbPb} \psi(2S)}{N_{pp} \psi(2S)}
\]

- Measure $\rho = N_{X(3872)} / N_{\psi(2S)}$ to cancel some uncert.
 ➡ $\rho_{PbPb} > \rho_{pp}$ does not mean $X(3872)$ enhanced in PbPb compared to pp
 ➡ $\psi(2S)$ as reference modified in PbPb

```
arXiv:2102.13048
```
Result: X(3872) in PbPb

\[R_{AA}^{X(3872)} = \frac{N_{PbPb}^{X(3872)}}{N_{pp}^{X(3872)}} = \frac{\rho_{PbPb}}{\rho_{pp}} \cdot R_{AA}^{\psi(2S)} \approx 1.08 \]

PbPb 368 \mu b^{-1}, pp 28.0 pb^{-1} (5.02 TeV)

CMS

Prompt \psi(2S)

\[R_{AA}^{\psi(2S)} \approx 0.1 \]

CMS

1.7 nb^{-1} (PbPb 5.02 TeV)

\[\rho_{PbPb}^{PbPb} = 1.08 \]

\[\rho_{PbPb} \approx 0.1 \]
pp vs. Theoretical Models

Prompt $X(3872)/\psi(2S)$ vs. multiplicity in pp

- Comparison to comover interaction model supports tetraquark interpretation
Theoretical calculations for PbPb (IV)

- AMPT transport model
- TAMU transport model

- Both models predict yields increasing vs. multiplicity
- Strong effect from coalescence

$N_{\text{High-multiplicity}} > N_{\text{Low-multiplicity}}$

$N_{\text{Low-multiplicity}} < N_{\text{High-multiplicity}}$

Jing Wang (MIT), CMS Charm Hadronization, Quark Matter (Kraków, Poland), 2022.4.7
Theoretical calculations for PbPb (V)

AMPT transport model

TAMU transport model

\[N_{\text{Molecule}} > N_{\text{Tetraquark}} \]

\[N_{\text{Molecule}} < N_{\text{Tetraquark}} \]

• Disagreement between theoretical models

PRL 126 (2021) 012301

arXiv:2006.09945
Have Some Fun with Heavy Flavors!

Heavy Flavor Measurement Compilation Tool

Observable: RAA \pm vs. p_T \pm

X-axis range: 0 0 - 40 0 Log x

Y-axis range: 0 0 - 1.5 0 Log y

Clear all Random color Checked only

e.g. open, baryon, lepton

- Prompt D^0 AuAu 200 GeV STAR 0-10% $|y| < 1$
- Prompt D^0 AuAu 200 GeV STAR 10-40% $|y| < 1$
- Prompt D^0 AuAu 200 GeV STAR 40-80% $|y| < 1$
- Prompt D^0 PbPb 5.02 TeV ALICE 0-10% $|y| < 0.5$
- Prompt D^0 PbPb 5.02 TeV ALICE 10-40% $|y| < 0.5$
- Prompt D^0 PbPb 5.02 TeV ALICE 40-80% $|y| < 0.5$
- Prompt D^0 PbPb 5.02 TeV CMS 0-100% $|y| < 1$
- Prompt D^0 PbPb 5.02 TeV CMS 10-100% $|y| < 1$

https://boundino.github.io/hinHFplot/
CMS Phase-2 upgrades for HL-LHC

Table 1: Main features of CMS detector at present and Phase 2 upgrades.

<table>
<thead>
<tr>
<th>Subdetector</th>
<th>CMS present</th>
<th>CMS Phase-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Tracker</td>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>Calorimeter</td>
<td>Low-granularity</td>
<td>High-granularity end-cap with silicon sensors</td>
</tr>
<tr>
<td>Muon detector</td>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td>L1 trigger bandwidth</td>
<td>30 kHz for PbPb, 100 kHz for pp and pPb</td>
<td>750 kHz (pass through all PbPb events)</td>
</tr>
<tr>
<td>DAQ throughput</td>
<td>6 GB/s</td>
<td>60 GB/s</td>
</tr>
<tr>
<td>Time-of-flight for Particle ID</td>
<td>N/A</td>
<td>MTD for charged hadron</td>
</tr>
<tr>
<td></td>
<td></td>
<td>**PID over $</td>
</tr>
</tbody>
</table>

- New **MIP Timing Detector (MTD) for TOF-PID!**
- Unique PID up to $|\eta| = 3$

Precision determination of the arrival time of the signal
CMS MIP Timing Detector (MTD)

- Large acceptance
 - Barrel Timing Layer (BTL): $|\eta| < 1.5$
 - End-cap Timing Layer (ETL): $1.6 < |\eta| < 3$
- Serve as TOF detector for hadron particle identification
- Time resolution 30-40 ps

<table>
<thead>
<tr>
<th>Experiment</th>
<th>r (m)</th>
<th>σ_T (ps)</th>
<th>r/σ_T ($\times100$) (m \times ps$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAR-TOF</td>
<td>2.2</td>
<td>80</td>
<td>2.75</td>
</tr>
<tr>
<td>ALICE-TOF</td>
<td>3.7</td>
<td>56</td>
<td>6.6</td>
</tr>
<tr>
<td>CMS-MTD</td>
<td>1.16</td>
<td>30</td>
<td>3.87</td>
</tr>
</tbody>
</table>
CMS MIP Timing Detector (MTD)

Separation Power vs. kinematic phase space

- CMS MTD brings complementarity and uniqueness in PID

CMS MTD ($|\eta| < 3$) vs. ALICE: mid-rapidity ($|\eta| < 0.9$)
LHCb: forward ($2 < \eta < 5$)
MTD Impact on HF hadron reconstruction

- Significant improvement of signal to background ratio with PID information from MTD

Without MTD

CMS 1 year of Run 4

With MTD

CERN-LHCC-2019-003
MTD Impact on HF hadron reconstruction

\[\Lambda_c \rightarrow pK\pi \]

- More significant improvement for \(\Lambda_c \) (3 daughters) with PID information from MTD
- Enable new probes e.g. \(B^+ \rightarrow D\pi \rightarrow K\pi\pi \)

\[D^0 \rightarrow K\pi \]

\[\Lambda_c \] BKG rejection with MTD, \(\sigma_T=30 \) ps

\[D^0 \] BKG rejection with MTD, \(\sigma_T=30 \) ps
\(\Lambda_c \) Azimuthal Anisotropy \(v_2 \)

- High-precision measurements of \(D^0 \) \(v_2 \) down to 0 \(p_T \) with MTD
- MTD allows measurements of \(\Lambda_c \) \(v_2 \) down to 1 GeV
- Test of the \(n_q \) scaling universalness in the charm sector

(CERN-LHCC-2019-003)
Wide Rapidity Coverage of Λ_{c}/D^0 (PbPb)

- Unique capability of CMS due to the large inner tracker and MTD acceptance
- Capability to access low p_T (down to 0) \(\Rightarrow\) Total charm cross-section
- Except for Langevin+CLVisc, other models shown assume boost invariant in the longitudinal direction
 \(\Rightarrow\) Provide the strongest constraint on the heavy quark hadronization mechanism

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)
CMS Phase-2 Upgrades

HL-LHC: CMS will be the most comprehensive QGP detector

<table>
<thead>
<tr>
<th></th>
<th>Wide-coverage Tracking</th>
<th>Precision Vertexing</th>
<th>Full Calorimetry</th>
<th>High Rate</th>
<th>Lepton PID</th>
<th>Hadron PID</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS</td>
<td>✓ Upgrade</td>
<td>✓ Upgrade</td>
<td>✓</td>
<td>✓ Upgrade</td>
<td>✓</td>
<td>✓ New</td>
</tr>
<tr>
<td>ATLAS</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>ALICE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>LHCb</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- High precision production and flow in large and small systems with detector upgrade and HL-LHC
 ➤ Hot and cold nuclear matter effects, wider kinematics and more differential

- New MTD leads to unprecedented precision of D mesons and Λ_c down to 0 p_T
 ➤ Also enable new observables (photon-D correlation, D-Ā correlation)

- Wide rapidity coverage (|η| < 4) provides new access to study of longitudinal dynamics
 ➤ Full 3+1D heavy quark dynamics in QGP medium
Charm Meson v_2 in PbPb

- Observe non-zero D^0 v_2
- Smaller D^0 v_2 than light flavor hadrons
 ➡ Charm quarks not fully thermalized
 ➡ Still remember their own properties

v_2 for different flavors

PbPb (5.02 TeV)

PLB 816 (2021) 136253
JHEP 1809 (2018) 006