Measurement of global spin alignment of vector mesons at RHIC

Subhash Singha
Institute of Modern Physics Chinese Academy of Sciences, Lanzhou
(For the STAR Collaboration)
Outline

• Motivation

• Global spin alignment (ρ_{00}) analysis method

• Results:

 - Au+Au at $\sqrt{s_{\text{NN}}} = 11.5 - 200$ GeV (BES): ϕ and K^*
 - Ru+Ru & Zr+Zr at $\sqrt{s_{\text{NN}}} = 200$ GeV (Isobar): K^0 and $K^{*+/-}$

• Summary
Motivation

In non-central heavy-ion collisions

- A large orbital angular momentum (OAM) imparted into the system
 \[L = r \times p \sim bA \sqrt{s_{NN}} \sim 10^4 \, \hbar \]
- Such a huge OAM can polarize quarks and antiquarks due to “spin-orbit” interaction.
Motivation

In non-central heavy-ion collisions

- **Initial strong magnetic field** \((B)\) is expected
 \[eB \sim m^2_\pi \sim 10^{18} \text{ Gauss} \]
- Such strong \(B\) field can also polarize quarks. Can induce different spin polarization for quarks and anti-quarks with different magnetic moments

Vector meson spin alignment (ρ_{00})

Spin alignment (ρ_{00}):
Measured from the angular distribution (θ^*) of the daughter particle in parent’s rest frame.

$$\frac{dN}{d(\cos\theta^*)} = N_0 \times \left[(1 - \rho_{00}) + (3\rho_{00} - 1) \cos^2\theta^* \right]$$

ρ_{00}: 00th component of spin density matrix

θ^*: Angle between momentum of daughter and polarization axis in parent’s rest frame

▶ Deviation of ρ_{00} from (1/3) indicates spin alignment

References:
The STAR detector and event plane

- Second order event plane (Ψ_2) is measured using the TPC with $0.15 < p_T < 2.0$ GeV/c

- Uniform acceptance, full azimuthal coverage
- TPC: tracking, centrality and event plane
- TPC+TOF: particle identification

Polarization axis \rightarrow Perpendicular to Ψ_2

STAR Preliminary

$\sqrt{s_{NN}} = 200$ GeV

- Ru + Ru
- Zr + Zr
Signal reconstruction

φ → K⁺K⁻

K*⁰ → K⁺π⁻

K*⁺ → K⁰⁺π⁺

Mixed event (φ) and rotational background (K*⁰ and K*⁺⁻) subtraction

Yield is calculated from histogram integration

\[
\text{Breit Wigner} = \frac{1}{2\pi} \frac{\Gamma}{(m - m_0)^2 + \Gamma^2/4}
\]
Analysis method

• Raw yield of K^*0 is extracted from five $|\cos \theta^*|$ bins
• Yield of K^*0 is corrected for efficiency and acceptance using STAR detector simulations

\[
\frac{dN}{d(\cos \theta^*)} = N_0 \times \left[(1 - \rho_{00}^{\text{obs}}) + (3\rho_{00}^{\text{obs}} - 1) \cos^2 \theta^* \right]
\]

• Observed ρ_{00}^{obs} is calculated from fitting the yield with function:

\[
\rho_{00}^{\text{obs}} = \frac{1}{\frac{4}{1 + 3R} \left(\rho_{00}^{\text{obs}} - \frac{1}{3} \right)}
\]

Analysis method

- Raw yield of K^{*+} is extracted from five $|\cos \theta^*|$ bins
- Yield of K^{*+} is corrected for efficiency and acceptance using STAR detector simulations

\[
\frac{dN}{d(\cos \theta^*)} = N_0 \times \left[(1 - \rho_{00}^{obs}) + (3\rho_{00}^{obs} - 1) \cos^2 \theta^*\right]
\]

- Observed ρ_{00}^{obs} is calculated from fitting the yield with function:
 - $\rho_{00}^{obs} = \frac{1}{3} \left(1 + \frac{4}{1 + 3R} (\rho_{00}^{obs} - \frac{1}{3})\right)$

\(\text{Tang et. al., Phys. Rev. C 98, 044907 (2018)}\)

Subhash Singha @ QM 2022
Results: Au+Au Beam Energy Scan

\[
\sqrt{s_{NN}} = 11.5 - 200 \text{ GeV} : \phi \text{ and } K^{*0}
\]

<table>
<thead>
<tr>
<th>Particle Species</th>
<th>Quark content</th>
<th>Mass (GeV/c^2)</th>
<th>Spin</th>
<th>Lifetime (fm/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi)</td>
<td>(s\bar{s})</td>
<td>1.092</td>
<td>1</td>
<td>45</td>
</tr>
<tr>
<td>(K^{*0})</td>
<td>(d\bar{s})</td>
<td>0.896</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
\(\rho_{00} (\sqrt{s_{NN}}): \phi \text{ and } K^*0 \text{ from BES-I} \)

For 20-60%:

- For \(\sqrt{s_{NN}} \leq 62.4 \text{ GeV} \):
 - \(\phi \rho_{00} = 0.3451 \pm 0.0017 \text{ (stat.)} \pm 0.0018 \text{ (sys.)} \)
 - \(\rho_{00} > 1/3 \) with 8.4\(\sigma \)

- For \(\sqrt{s_{NN}} \leq 54.4 \text{ GeV} \):
 - \(K^*0 \rho_{00} = 0.3356 \pm 0.0034 \text{ (stat.)} \pm 0.0043 \text{ (sys.)} \)
 - \(\rho_{00} \sim 1/3 \)

STAR Collaboration, arXiv: 2204.02302

Subhash Singha @ QM 2022
Expectation of ρ_{00} from theory

<table>
<thead>
<tr>
<th>Physics Mechanisms</th>
<th>(ρ_{00})</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_Λ: Quark coalescence</td>
<td>$< 1/3$</td>
</tr>
<tr>
<td>vorticity & magnetic field1</td>
<td>(Negative $\sim 10^{-5}$)</td>
</tr>
<tr>
<td>c_ε: Vorticity tensor1</td>
<td>$< 1/3$</td>
</tr>
<tr>
<td></td>
<td>(Negative $\sim 10^{-4}$)</td>
</tr>
<tr>
<td>c_E: Electric field2</td>
<td>$> 1/3$</td>
</tr>
<tr>
<td></td>
<td>(Positive $\sim 10^{-5}$)</td>
</tr>
<tr>
<td>Fragmentation3</td>
<td>$> \text{or, } < 1/3$</td>
</tr>
<tr>
<td></td>
<td>($\sim 10^{-5}$)</td>
</tr>
<tr>
<td>Local spin alignment and helicity4</td>
<td>$< 1/3$</td>
</tr>
<tr>
<td>Turbulent color field5</td>
<td>$< 1/3$</td>
</tr>
<tr>
<td>c_ϕ: Vector meson strong</td>
<td>$> 1/3$</td>
</tr>
<tr>
<td>force field6</td>
<td>(Can accommodate large positive signal)</td>
</tr>
</tbody>
</table>

Expectation of ρ_{00} from theory

<table>
<thead>
<tr>
<th>Physics Mechanisms</th>
<th>ρ_{00}</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_Λ: Quark coalescence vorticity & magnetic field</td>
<td>$< 1/3$ (Negative $\sim 10^{-5}$)</td>
</tr>
<tr>
<td>c_ϵ: Vorticity tensor</td>
<td>$< 1/3$ (Negative $\sim 10^{-4}$)</td>
</tr>
<tr>
<td>c_E: Electric field</td>
<td>$> 1/3$ (Positive $\sim 10^{-5}$)</td>
</tr>
<tr>
<td>Fragmentation</td>
<td>$> \text{or} < 1/3$ ($\sim 10^{-5}$)</td>
</tr>
<tr>
<td>Local spin alignment and helicity</td>
<td>$< 1/3$</td>
</tr>
<tr>
<td>Turbulent color field</td>
<td>$< 1/3$</td>
</tr>
<tr>
<td>c_ϕ: Vector meson strong force field</td>
<td>$> 1/3$ (Can accommodate large positive signal)</td>
</tr>
</tbody>
</table>

- Like electric charges in motion can generate an EM field, s and \bar{s} quarks in motion can generate an effective ϕ-meson field
- The electric part of the ϕ-meson field can polarize s and \bar{s} quarks with a large magnitude due to strong interaction (large coupling constant g_ϕ)

$$
\rho_{00}(\phi) \approx \frac{1}{3} + c_\Lambda + c_\epsilon + c_E + c_\phi; \\

\begin{align*}
 c_\phi & \equiv \frac{g_\phi^4}{27m_s^4m_\phi^4T_{\text{eff}}^2} \langle p^2 \rangle_\phi \langle \tilde{E}_{\phi,z}^2 + \tilde{E}_{\phi,x}^2 \rangle; \\
 C_s(y) & \equiv g_\phi^4 \langle \tilde{E}_{\phi,z}^2 + \tilde{E}_{\phi,x}^2 \rangle
\end{align*}
$$
• Surprisingly large ϕ ρ_{00} cannot be accommodated by conventional mechanisms

• Polarization by a strong force field of vector meson → Can accommodate large deviation for ϕ ρ_{00} at mid-central collisions

$$\rho_{00}(\sqrt{s_{NN}}): \phi \text{ and } K^*0 \text{ from BES-I}$$

\[\rho_{00}(\phi) \approx \frac{1}{3} + c_\Lambda + c_e + c_E + c_\phi;\]

\[c_\phi \equiv \frac{g_\phi^4}{27m_s^4m_\phi^4T_{eff}^2} \langle p^2 \rangle_\phi \langle \Bar{E}^2_{\phi,z} + \Bar{E}^2_{\phi,x} \rangle;\]

\[C_s(y) \equiv g_\phi^4 \langle \Bar{E}^2_{\phi,z} + \Bar{E}^2_{\phi,x} \rangle\]
ρ₀₀ (centrality): φ and K*₀ from BES-I

- **For central at 200 GeV:**
 - \(φ, K^*₀ \rho₀₀ < 1/3 \)
 - Local spin alignment\(^1\)
 - or, helicity contribution\(^2\)

- **For mid-central and peripheral:**
 - \(φ, K^*₀ \rho₀₀ \sim 1/3 \)

- Need inputs from theory to understand centrality differential \(\rho₀₀ \)

\(^1\) Xia et al, Phys. Lett. B 817, 136325 (2021)
\(^2\) Gao, Phys. Rev. D 104, 076016 (2021)
\(\rho_{00} (p_T): \phi \) and \(K^*0 \) from BES-I

STAR Collaboration, arXiv: 2204.02302

- For 20-60%: non-trivial \(p_T \) dependence

- Need inputs from theory to understand \(p_T \) differential \(\rho_{00} \)

Subhash Singha @ QM 2022
Results: Zr+Zr and Ru+Ru (Isobar collisions)

\[\sqrt{s_{NN}} = 200 \text{ GeV: } K^0 \text{ and } K^{*+/-} \]

<table>
<thead>
<tr>
<th>Particle Species</th>
<th>Quark content</th>
<th>Mass (GeV/c^2)</th>
<th>Spin</th>
<th>Lifetime (fm/c)</th>
<th>Magnetic moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K^0) ((\text{anti-}K^0))</td>
<td>(d\bar{s}) ((\bar{d}s))</td>
<td>0.896</td>
<td>1</td>
<td>4</td>
<td>(\mu_d \approx -0.97\mu_N)</td>
</tr>
<tr>
<td>(K^{*+/-})</td>
<td>(u\bar{s}) ((\bar{u}s))</td>
<td>0.892</td>
<td>1</td>
<td>4</td>
<td>(\mu_u \approx 1.85\mu_N)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\mu_s \approx 0.61\mu_N)</td>
</tr>
</tbody>
</table>

\[\rho_{00}(B) \approx \frac{1}{3} - \frac{4}{9} \beta^2 \mu_{q_1}\mu_{q_2}B^2 \]

(Expect negligible contribution)

\[\rho_{00}(B) > 1/3 \text{ for } K^0 \]

\[\rho_{00}(B) < 1/3 \text{ for } K^{*+/-} \]

K* ρ₀₀ from Isobar collisions

- K*⁺⁻ : First measurement of global ρ₀₀
- K*₀ vs. K*⁺⁻ : ~ 3.9σ difference
 - Ordering opposite to the expectation from B field
 - Contribution from vector meson strong force field?

- Need inputs from theory to understand this behavior

Subhash Singha @ QM 2022
ρ_{00} (Centrality): K^*0 and anti-K^*0

- **Species dependence:**
 - $K^*0 \rho_{00} \sim \text{anti-}K^*0 \rho_{00}$
ρ_{00} (Centrality): K^{*0} and anti-K^{*0}

- **Species dependence:**
 - $K^{*0} \rho_{00} \sim$ anti-$K^{*0} \rho_{00}$

- **System size dependence:**
 - ρ_{00} Au+Au \sim Zr+Zr \sim Ru+Ru

STAR Preliminary
\(\rho_{00} (p_T): K^*0 \) and anti-\(K^*0 \)

- **Species dependence:**
 - \(K^*0 \) \(\rho_{00} \) \(\sim \) anti-\(K^*0 \) \(\rho_{00} \) \(\sim 1/3 \)

- Plot shows data points for Ru+Ru and Zr+Zr collisions at 200 GeV, with species dependence indicated through graphical representation.
\(\rho_{00} (p_T): K^*0 \) and anti-\(K^*0 \)

- **Species dependence:**
 - \(K^*0 \) \(\rho_{00} \) ~ anti-\(K^*0 \) \(\rho_{00} \) ~ 1/3

- **System size dependence:**
 - \(\rho_{00} \) Au+Au ~ Zr+Zr ~ Ru+Ru
$\rho_{00}(p_T): K^*+/-$

```
\begin{itemize}
  \item System size dependence:
  \begin{itemize}
    \item $\rho_{00} \text{ Zr+Zr} \sim \text{ Ru+Ru}$
  \end{itemize}
\end{itemize}
```
$\rho_{00}(p_T)$: $K^*/-\text{ and } K^*0$

- **System size dependence:**
 - ρ_{00} Zr+Zr \sim Ru+Ru

- **Particle species dependence:**
 - $K^*/-$ ρ_{00} $> K^0$ ρ_{00}
Summary

- We presented ρ_{00} of ϕ and K^* from Au+Au BES-I at 11.5-200 GeV

- For 20-60%: $\rho_{00}(\phi) > 1/3$, $\rho_{00}(K^*) \sim 1/3$

- Beam energy dependence of ϕ ρ_{00} at mid-central collisions is consistent with a model fitting with vector meson force fields

- We presented ρ_{00} of K^* and $K^{*/-}$ from RHIC Isobar (Ru+Ru & Zr+Zr) at 200 GeV
 - For 20-60%: $\rho_{00}(K^{*/-}) > \rho_{00}(K^*)$
 - $\rho_{00}(K^*)$: Zr+Zr ~ Ru+Ru ~ Au+Au

- More inputs from theory are needed to interpret the ρ_{00} measurements
Thank you for your attention
Backup slides
\(\rho_{00} (\text{Centrality}): K^*0 \text{ and anti-}K^*0 \text{ from isobar} \)

- **Species dependence:**
 - \(K^*0 \rho_{00} \sim \text{anti-}K^*0 \rho_{00} \)

- **System size dependence:**
 - \(\rho_{00} \text{ Au+Au } \sim \text{Zr+Zr } \sim \text{Ru+Ru} \)
Simulation framework for efficiency and acceptance

Input: embedded MC K* + real data tracks

Calculate Ψ from real data tracks

Reject MC K* in φ-Ψ to mimic measured K* v2(pT)

Calculate \(\cos \theta^* \) wrt Ψ for MC K* tracks

Reconstructed (RC) K*

RC K* and its daughters
Apply experimental acceptance and track cuts on daughters
&
Consider K* v2(pT) effects accordingly

Calculate \(\cos \theta^* \) wrt Ψ for RC tracks

Results corrected for K* v2 bias

Efficiency \times\text{ Acceptance} = \frac{\text{RC}}{\text{MC}}

Correction factor includes acceptance and efficiency (pT, φ-Ψ, \(\cos \theta^* \)) with v2 effect included
Efficiency and acceptance for K^*

Isobar 200 GeV, 20-60%, $2.0 < p_T < 2.5$ GeV/c

MC Embedding (K^0)

Efficiency \times Acceptance for K^0

Isobar 200 GeV, 20-60%, $2.0 < p_T < 2.5$ GeV/c

MC Embedding (K^+)

Efficiency \times Acceptance for K^+
$\rho_{00} (\sqrt{s_{NN}})$: ϕ and K^{*0} for central collisions from BES-I

STAR Collaboration, arXiv: 2204.02302

Au+Au (0-20% & $|y| < 1.0$)