Results of femtoscopic correlations at CMS

Dener S. Lemos, for the CMS Collaboration

University of Illinois at Chicago

April 7th, 2022
Introduction and motivation

- Femtoscopy: particle correlations at low-\(q\)
 \[q^2 = q_{\text{inv}}^2 = -(p_1 - p_2)^2 \]

- Powerful tool to probe space-time dimensions of the particle emitting source

- Sensitive to
 - quantum statistics
 - final-state interactions
 - backgrounds

- In this talk, charged hadron (\(h^\pm\)) correlations
 - pp collisions at 13 TeV: measurements of multiplicity and pair transverse momentum dependence
 - PbPb collisions at 5.02 TeV: study of correlation function shape
Femtoscopic correlation function

Theoretically

\[C(q) = \frac{P_2(p_1, p_2)}{P_1(p_1)P_1(p_2)} \]

\[C(q) \sim 1 \pm \lambda |F[\tilde{\rho}(q)]|^2 \]

\[C(q) = N(1 \pm \lambda e^{-|qR|^\alpha}) \]

Experimentally

- single ratio (SR)

\[C(q) = \frac{A(q)}{B(q)} \]

One-dimensional fit to correlation function for charged hadrons (Lévy-type)

\[C(q) = N\{1 - \lambda + \lambda K_C(q; R, \alpha)[1 + \lambda e^{-|qR|^\alpha}]\}\Omega(q) \]

- Coulomb correction
- Quantum Statistics
- Background (bkg)
Fitting the correlation function

\[C(q) = N \{ 1 - \lambda + \lambda K_C(q; R, \alpha) \left[1 + \lambda e^{-|q_R|^\alpha} \right] \} \Omega(q) \]

One-dimensional fit to correlation function for charged hadrons (Lévy-type)
Background estimate

- **Double Ratios**
 - Ratio of SR
 - \(DR = \frac{SR_{\text{DATA}}}{SR_{\text{MC}}} \)
 - Strong MC dependence

- **Cluster Subtraction**
 - Fully data-driven
 - Bkg estimated from fit of \((+ -)\) SR
 - Translate \((+ -)\) to \((\pm \pm)\) SR estimating an amplitude factor

- **Hybrid Cluster Subtraction**
 - Fit SR from MC for both \((+ -)\) and \((\pm \pm)\) bkg
 - Find a conversion function (parameters)
 - Fit \((+ -)\) in data and use the conversion to \((\pm \pm)\) SR

- **CMS PAS HIN-21-011** → New method!
 - Similar to double ratios

 \[
 DR(q) = \frac{SR(q)}{BG(q)}
 \]

 \(BG(q) = N(1 + \alpha_1 e^{-(qR_1)^2})(1 - \alpha_2 e^{-(qR_2)^2}) \)
Experimental results
pp collisions at 13 TeV
Similar behavior for all the methods

- in agreement for R_{inv} (or R)
 - R_{inv} increases with N_{tracks}
- λ shows small dependence with N_{tracks}
 - except the first bin
- deviations in λ using CS method
 - less constrained by the fit
- R_{inv} and λ decrease with k_T
 - source expansion in pp collisions?
Comparison with CMS and ATLAS results at 7 TeV

ATLAS: EPJC 75 (2015) 466

CMS at 13 TeV: JHEP 03 (2020) 014

Good agreement with previous measurements!
Comparison with Color Glass Condensate (CGC) predictions

- CGC calculation for pp at 7 TeV
 - without system evolution
 - L. McLerran et al.
 - *NPA* 916 (2013) 210
 - A. Bzdak et al.
 - *PRC* 87 (2013) 064906

- Similar shape, but large difference in magnitude
 - hydrodynamic evolution?
 - cold nuclear matter effects?
 - need more phenomenological studies!

Comparison with Color Glass Condensate (CGC) prediction

\[
R_{\text{inv}} [\text{fm}] = \left(\frac{\langle dN_{\text{tracks}} / d\eta \rangle}{1/3} \right)^{1/3}
\]

- CMS
- pp (13 TeV)

- HCS method, \(x \equiv (dN_{\text{tracks}} / d\eta)^{1/3} \)
 - Syst.: HCS
 - Intramethod variation
 - Linear fit + constant
 - \(R_{pp}(x) \) CGC, pp @ 7 TeV

- CMS
- *JHEP* 03 (2020) 014

- CMS
- *PRC* 87 (2013) 064906
- *NPA* 916 (2013) 210
$1/R_{inv}^2$ vs $m_T = \sqrt{m_{T}^2 + k_{T}^2}$

- From hydrodynamics ([NPA 946 (2016) 227])
 - intercept: reflects the source geometrical size (at freeze-out)
 - slope: reflects the flow component
 - larger slope (larger flow) \rightarrow lower multiplicities (similar to peripheral AA collisions)
 - smaller slope (lower flow) \rightarrow higher multiplicities (similar to more central AA collisions)
 - similar behavior for multiplicity > 40

For more details see Sandra Padula [poster](April 6th at Section 1 – T07_1)
PbPb collisions at 5.02 TeV
Dependence of Lévy stability index α in m_T and multiplicity

First measurement of α at LHC energies
Does not strongly depend on m_T
Between 1.6 and 2.0 from semi-peripheral to central collisions
Centrality dependence not modeled so far \rightarrow challenge for phenomenology
Shape is important in femtoscopic measurements!

For more details see Balázs Kórodi poster (April 6th at Section 1 – T07_1)
Centrality and m_T dependence

- Similar behavior as observed in pp collisions
 - λ decreases with $m_T(k_T)$
 - small centrality dependence
 - R_{inv} (or R) increases with centrality and decreases with m_T
Centrality and m_T dependence

- Similar behavior as observed in pp collisions
 - λ decreases with $m_T(k_T)$
 - small centrality dependence
 - R_{inv} (or R) increases with centrality and decreases with m_T
 - $1/R_{\text{inv}}^2$ vs m_T: shows linear scaling
 - $1/R_{\text{inv}}^2 = A m_T + B$
 - hydrodynamic prediction
 - working also for Lévy sources
Summary and outlook

- In general, the results show
 - R_{inv} with N_{trk}/centrality and λ with k_T
 - λ with N_{trk} and k_T (m_T)

- First measurement using MB and HM pp collisions at 13 TeV
 - different background methods studied
 - consistent with previous measurements at 7 TeV
 - qualitative comparison CGC and hydro models

- First measurement of α dependency (centrality and m_T) at LHC energies
 - non-Gaussian behavior observed
 - centrality dependent
 - R_{inv} results show hydro scaling for Lévy sources

-Measurement of correlations with V^0's coming soon
Thank You

The work of the UIC HINP group is supported by the DOE-NP grant
Backup
CMS detector

CMS DETECTOR
- Total weight: 14,000 tonnes
- Overall diameter: 15.0 m
- Overall length: 28.7 m
- Magnetic field: 3.8 T

STEEL RETURN YOKE
- 12,500 tonnes

SILICON TRACKERS
- Pixel (100x150 μm): ~16m² ~66M channels
- Microstrips (80x180 μm): ~200m² ~9.6M channels

SUPERCONDUCTING SOLENOID
- Niobium titanium coil carrying ~18,000 A

MUON CHAMBERS
- Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
- Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
- Silicon strips: ~16m² ~137,000 channels

FORWARD CALORIMETER
- Steel + Quartz fibres: ~2,000 Channels

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)
- ~76,000 scintillating PbWO₄ crystals

HADRON CALORIMETER (HCAL)
- Brass + Plastic scintillator: ~7,000 channels
Quantum statistics effect

\[\alpha = 2 \]

\[C(q) = 1 + \beta e^{-|qR|^\alpha} \]

\[\beta = 1 \text{ for identical bosons, } -\frac{1}{2} \text{ for identical fermions and } 0 \text{ for non-identical} \]
Coulomb final-state interactions

\[C(q) = N\{1 - \lambda + \lambda K_C(q; R, \alpha)[1 + \lambda e^{-|qR|^\alpha}]\}\Omega(q) \]

For Gaussian (hypergeometric) and Gamov: see [PRC 80 (2009) 034907]
For Cauchy-Lorentz (alpha = 1), see: [PRC 97 (2018) 064912]
For Lévy-type source (alpha dependency): see [PPN 51 (2020) 238]
Different background subtraction methods
Double ratios

- Ratio of single ratios

\[
DR(q_{\text{inv}}) \equiv C_{2,\text{BE}}(q_{\text{inv}}) = \frac{SR(q_{\text{inv}})}{SR(q_{\text{inv}})_{\text{MC}}} = \frac{\left[\left(\frac{N_{\text{ref}}}{N_{\text{sig}}} \right) \left(\frac{dN_{\text{sig}}/dq_{\text{inv}}}{dN_{\text{ref}}/dq_{\text{inv}}} \right) \right]}{\left[\left(\frac{N_{\text{ref}}}{N_{\text{sig}}} \right)_{\text{MC}} \left(\frac{dN_{\text{MC}}/dq_{\text{inv}}}{dN_{\text{MC, ref}}/dq_{\text{inv}}} \right) \right]}
\]

- need MC simulations without femtoscopic signal
 - ideally should remove all background
 - strong MC dependence
Fully data-driven technique

- effect of resonances: decreases with increasing multiplicity
- modulation of bkg effect from \(h^\pm \) SR in data

\[
C_2^{(+)}(q_{\text{inv}}) = c \left[1 + \frac{b}{\sigma_b \sqrt{2\pi}} \exp \left(-\frac{q_{\text{inv}}^2}{2\sigma_b^2} \right) \right] \left(1 + \epsilon q_{\text{inv}} \right)
\]

- \(b \) and \(\sigma_b \) can be parametrized as
 - \(b \rightarrow \) bkg amplitude:
 \[
b(N_{\text{trk}}^{\text{ offline}}, k_T) = \frac{b_0}{(N_{\text{trk}}^{\text{ offline}})^{n_b}} \exp \left(\frac{k_T}{k_0} \right)
\]
 - \(\sigma_b \rightarrow \) cluster width:
 \[
 \sigma_b(N_{\text{trk}}^{\text{ offline}}, k_T) = \left[\sigma_0 + \sigma_1 \exp \left(-\frac{N_{\text{trk}}^{\text{ offline}}}{N_0} \right) \right] k_T^{n_T}
 \]

https://cds.cern.ch/record/2318575

JHEP 03 (2020) 014
Cluster Subtraction (CS) method – II

- Modulation of background effect in charged hadron correlations:
 - also present in \(h^\pm \) pairs, with similar shape but a smaller amplitude
 - use the form of the contribution obtained from \(h^\pm \) pairs: \(b \) and \(\sigma_b \) fixed
 - assume the width is the same and determine the (\(\pm \pm \)) bkg amplitude \(z(N_{\text{trk}}) \)

\[
C_2^{(++,---)}(q_{\text{inv}}) = c \left[1 + z(N_{\text{trk}}^\text{offline}, k_T) \frac{b}{\sigma_b \sqrt{2\pi}} \exp \left(-\frac{q_{\text{inv}}^2}{2\sigma_b^2} \right) \right] C_{BE}(q_{\text{inv}})
\]

\[
z(N_{\text{trk}}) = \left(\frac{aN_{\text{trk}}^\text{offline} + b}{1 + N_{\text{trk}}^\text{offline} + b} \right)
\]

\[
C_{BE}(q_{\text{inv}}) = [1 + \lambda \exp(-q_{\text{inv}} R_{\text{inv}})]
\]
Hybrid Cluster Subtraction (HCS) Method – I

- Technique first used by ATLAS ([PRC 96 (2017) 064908]) in pPb collisions at 5.02 TeV
- Fitting ($\pm\pm$) and (+ –) SR in MC
 - in Monte Carlo: no femtoscopic effects \rightarrow bkg can be modeled by fitting parameters
 - in data: Bose-Einstein correlations not present in (+ –) component – Bkg only
 - use the relations from MC to estimate the bkg component in ($\pm\pm$) SR

- Fit Functions
 \[
 \Omega(q_{inv}) = N \left(1 + B \exp \left[- \left| \frac{q_{inv}}{\sigma_B} \right|^{\alpha_B} \right] \right)
 \]
 - Parameters relation ($\alpha_B = 2$)
 \[
 \left[(\sigma_B)^{-1} \right]^{\pm\pm} = \rho \left[(\sigma_B)^{-1} \right]^{+-} + \beta \\
 B^{\pm\pm} = \mu(k_T) \left[B^{+-} \right]^{\nu(k_T)}
 \]
Hybrid Cluster Subtraction (HCS) Method – II

Relation $\left[(\sigma_B)^{-1} \right]^{\pm\pm} \text{ vs. } \left[(\sigma_B)^{-1} \right]^{+-}$

$$\rho = 0.82 \pm 0.04 \text{ (stat.); } \beta = 0.077 \pm 0.013 \text{ (stat.)}$$

Relation $(B)^{\pm\pm} \text{ vs. } (B)^{+-}$

$$B^{(++,--)} = \mu(k_T) [B^{+-}]^{\nu(k_T)}$$
After getting relations from Monte Carlo

- bkg in data is estimated in (+ −) SR
- assume relation of (+ −) SR and (±±) in data is the same as in MC
- use conversion function to estimate bkg in (±±) SR in data
- fit with:

\[C(q_{\text{inv}}) = \Omega(q_{\text{inv}}) \times C_{\text{BEC}}(q_{\text{inv}}) \]
Previous measurements
Charged hadrons
First femtoscopic measurement at LHC – pp collisions

- Performed in pp at 0.9 and 2.36 TeV
- Double ratio technique applied
- Coulomb corrected using Gamov
- Exponential fit shows a better agreement with data
 - Observed in higher energies
 - $R_{\text{Gauss}} \approx \sqrt{\pi} R_{\text{Expo}}$

PRL 105 (2010) 032001
Comparison with CMS and ATLAS results at 7 and 13 TeV

Good agreement with previous results!

Differences observed when compared with ATLAS results at 13 TeV
Identified particles
Particle identification

CMS pPb, $\sqrt{s_{NN}} = 5.02$ TeV

$\ln(\varepsilon/[\text{MeV/cm}])$

p [GeV]

$> 99.5\%$ purity

PRC 97 (2018) 064912
Charged pions and kaons in pp, pPb and PbPb

Assuming a Cauchy source function (α = 1)
Cluster subtraction method used for background determination
Coulomb correction for α = 1 applied

PRC 97 (2018) 064912