First measurement of the forward rapidity gap distribution in pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV with the CMS experiment

Michael Murray¹ and Dmitry Sosnov

¹ The University of Kansas, Lawrence, US

for the CMS collaboration

XXIXth International Conference on Ultra-relativistic Nucleus-Nucleus Collisions, Kraków, Poland April 4–10, 2022

Diffraction

Diffractive collisions : special inelastic collisions in which no quantum numbers

are exchanged between colliding particles;

characterized by a Rapidity Gap, caused by t-channel

pomeron(s) (\mathbb{P}) exchange.

Rapidity Gap ($\Delta\eta$ **)** : the rapidity regions free of final-state particles

Latest pA diffraction : were done by HELIOS with $\sqrt{s}=27$ GeV

Z. Phys. C 49 (1991) 355

Problems studied with diffraction

- Nature of the pomeron in QCD
- Small-x problem and "saturation" of parton densities
- Cross sections of inelastic diffractive processes are very sensitive to nonlinear saturation effects, which get more important for scattering off nuclei.
- Diffraction of hadrons on nuclear targets at very high energies is also relevant for cosmic-ray physics.

CMS Detector

- Silicon tracker: $|\eta| < 2.5$
- ullet ECAL and HCAL: $|\eta| < 3.0$
- Forward Hadron Calorimeter (HF): $3.0 < |\eta| < 5.2$

Data and event topologies

Event topologies of interest

Data, MC event generators

Data: CMS, pPb $\sqrt{s_{NN}} = 8.16 \text{ TeV}, 6.4 \ \mu\text{b}^{-1}$ (2016)

HIJING:

- hard parton scatterings: perturbative QCD
- soft interactions: string excitations

EPOS-LHC: Gribov-Regge theory for the parton interactions; Gluon saturation — phenomenological implementation

QGSJET II-04: Gribov-Regge theory for the parton interactions; Gluon saturation via higher order pomeron-pomeron interactions

The generators do not include photon (γ) exchange processes

lacksquare Rapidity Gap $(\Delta \eta^{\it F})$

- Central region (bins of 0.5 in η):
 - For $|\eta| < 2.5$:
 - No charged particles with $p_T > 0.2 \text{ GeV}$
 - The total energy of all particles less than 6 GeV
 - For $2.5 \le |\eta| < 3.0$:
 - The total energy of neutral hadrons less than 13.4 GeV
- • No detectable activity at the HF acceptance on the side of $\Delta\eta^{F}$

Hadron-level FRG cross section at diffractive enhanced subsample for $|\eta| < 3.0$

NEW QM22

Summary

- Forward rapidity gap distribution $\frac{d\sigma}{d\Delta \eta^F}$ from pPb collisions at $\sqrt{s_{NN}}=8.16$ TeV have been measured for the first time for both **pomeron-lead** (IPPb) and **pomeron-**/ γ -**proton** (IPp+ γ p) topologies
- ullet For the IPPb topology case, where the $\gamma ext{-exchange}$ contribution should be negligible:
 - \bullet Predictions of <code>EPOS-LHC</code> is about a factor of 2 and <code>QGSJET</code> II a factor of 4 are below the data
 - However for both of those generators the shape of the $\frac{d\sigma}{d\Delta\eta^F}$ spectrum is similar to that of the data
 - ullet The rapidity spectrum from the <code>HIJING</code> generator falls at large $\Delta\eta^F$ in contrast to the data
- For the $\mathbb{P}p+\gamma p$ case:
 - The cross section of EPOS-LHC and QGSJET II are lower than data by more than a factor of 5
 - ullet This suggests a very strong contribution from γp events which is not yet implemented in the considered event generators
- These data may be of significant help in the modeling of ultrahigh-energy cosmic ray air showers

Thank you for attention!