Feasibility studies of Λ transverse polarization in p+p interactions within NA61/SHINE at the CERN SPS

Yehor Bondar
Jan Kochanowski University of Kielce, Poland
NA61/SHINE Collaboration

Quark Matter in Krakow, 06.04.2022
Introduction

Motivation

None of the theoretical models[1–3] describes well all experimental data on transverse Λ polarization, its dependence on the transverse momentum of the hyperon and on the Feynman variable x_F.

Transverse polarization definition:
1. Rotate from Lab frame to production plane coordinate system:
 \[\hat{n}_x = \frac{\vec{p}_{\text{beam}} \times \vec{p}_\Lambda}{|\vec{p}_{\text{beam}} \times \vec{p}_\Lambda|}, \quad \hat{n}_z = \frac{\vec{p}_\Lambda}{|\vec{p}_\Lambda|}, \quad \hat{n}_y = \hat{n}_z \times \hat{n}_x \]
2. Boost along \hat{n}_z to Λ rest frame.
3. Calculate cosine of angles between proton momentum \vec{p}_p and axes: $\cos \theta_i = p_{p_i}/|\vec{p}_p|$, $i = x, y, z$
4. Fit distribution of the $\cos \theta_i$ to the theoretical prediction and extract P_i – projection of polarization.
 \[f(\cos \theta_i) = \frac{1 + \alpha P_i \cos \theta_i}{2}, \]
 where $\alpha = 0.732 \pm 0.014$.

According to parity conservation in the strong interaction, $P_y \equiv P_z \equiv 0$ if the incident proton beam is unpolarized. Thus the measurements of P_y and P_z are usually used for checking the systematic uncertainties.
Bias due to Λ selection cuts and limited detector acceptance

- 10^8 events of inelastic p+p simulated within EPOS\cite{4} & Geant3\cite{5} at 158 GeV/c beam momentum
- In EPOS, $P_x \equiv 0$: no Λ polarization.
- 10^7 Λ’s with $p\pi^-$ channel

Selection cuts\cite{6} were applied:
- Z difference between Λ vertex and primary vertex
 \[\Delta z = z_\Lambda - z_{PV} \] based on rapidity y:
- Number of points in VTPC’s >10 for both p and π^- tracks

Distributions of $\cos \theta_i$:

\[P_x = \left(-0.08 \pm 1.5\right) \cdot 10^{-3} \]
\[P_y = \left(-7.1 \pm 0.2\right) \cdot 10^{-2} \]
\[P_z = \left(-4.1 \pm 0.2\right) \cdot 10^{-2} \]
The equation of motion of the spin vector \vec{S} in Λ rest frame is

$$\frac{d\vec{S}}{d\tau} = \frac{\mu_{\Lambda}\mu_N}{\hbar} \left[\vec{S} \times \vec{B} \right]$$

Considering $dz = \frac{p_z}{mc} cd\tau$, integrate eq. using NA61/SHINE magnetic field \vec{B} [7]. Initial condition: generate random spin vectors \vec{S} uniformly distributed on unit sphere. Among these vectors, choose one with maximum angle change, $\phi_{max} = \max(\angle(\vec{S}_{\text{init}}, \vec{S}_{\text{final}}))$.

To estimate magnetic field impact on Λ polarization bias, for every Λ,

- Assign polarization vector \vec{S} uniformly distributed value,
- Propagate it in magnetic field until decay,
- Project \vec{S} on \hat{n}_x, \hat{n}_y, \hat{n}_z and fit their distributions.
Bias due to magnetic field: Magnetic field impact on Λ polarization estimation

Distribution of \vec{S}_{init} (before precession):

Distribution of \vec{S}_{final} (after precession):

Despite ϕ_{max} is significant, polarization bias is $\sim 10^{-4}$ due to averaging over all Λs.
• NA61/SHINE has a large potential to study Λ transverse polarization in p–p and p–A collisions.

• Geometrical acceptance significantly biases the result and it should be taken into account via MC corrections.

• **Magnetic field impact** on Λ polarization due to precession is smaller than detector acceptance-based polarization bias.

• To limit possible precession-based bias, \(\Delta z < 1 \text{ m} \) (\(\phi_{\text{max}} < 0.05 \)) cut can be used.

Bibliography

(5) *CERN Program Library Long Writeup* W5013 (1993)
(7) *JINST* **9** P06005 (2014)
Backup Slides
The Λ transverse polarization measured by ATLAS compared to measurements from lower center-of-mass energy experiments. In NA61/SHINE experiment, $p_{\text{lab}} = 158 \text{ GeV}/c$ corresponds to $\sqrt{s} = 17 \text{ GeV}$ and Λ peaked at $x_F \approx 0.1$. [ATLAS Collaboration, *Phys. Rev. D* **91** 032004 (2015)].

Distribution of simulated Λ over x_F defined as $x_F = (p_z)^{\text{CMS}}/(p_z)^{\text{CMS}}_{\text{max}}$. Left part - distribution of Λ with negative x_F, right part - with positive x_F.