

Probing the nuclear deformation effects in Au+Au and U+U collisions from STAR experiment

Jiangyong Jia for the STAR Collaboration

Nuclear shape:

$$R(\theta, \phi) = R_0 \left(1 + \beta \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2} \right] \right)$$

238| |

 $(\beta, \gamma)_{\rm U} \sim (0.28, 0^{\circ})$

¹⁹⁷Au

 $(\beta, \gamma)_{Au} \sim (0.14,60^{\circ})$

$$\langle \epsilon_2^2 \rangle, \ \left\langle \left(\delta \frac{1}{R} \right)^2 \right\rangle, \ \left\langle \epsilon_2^2 \delta \frac{1}{R} \right\rangle, \ \left\langle \left(\delta \frac{1}{R} \right)^3 \right\rangle$$

Final state:

$$\left\langle v_2^2 \right
angle, \quad \left\langle (\delta p_{\mathrm{T}})^2
ight
angle, \quad \left\langle v_2^2 \delta p_{\mathrm{T}}
ight
angle, \quad \left\langle (\delta p_{\mathrm{T}})^3
ight
angle$$

Connecting the final state to the initial state²

Initial Shape

Hydro-response

$$\epsilon_{
m n}
ightarrow v_{
m n}$$

Harmonic flow

shape & size fluctuations from

$$\langle v_2^2 \rangle, \ \langle (\delta p_{\mathrm{T}})^2 \rangle, \ \langle v_2^2 \delta p_{\mathrm{T}} \rangle, \ \langle (\delta p_{\mathrm{T}})^3 \rangle$$

Influence of nuclear deformation

small v2

large [pt]

small area

Average over all orientation U+U

More body+body than tip-tip events

Two-particle correlations:

$$egin{aligned} \left\langle v_2^2
ight
angle \propto \left\langle \epsilon_2^2
ight
angle \sim a_2 + b_2 eta^2_{ extsf{b}_2, extsf{b}_0} > 0 \ rac{\left\langle (\delta p_{ extsf{T}})^2
ight
angle}{\left\langle p_{ extsf{T}}
ight
angle^2} \propto rac{\left\langle (\delta R)^2
ight
angle}{R^2} \sim a_0 + b_0 eta^2 \end{aligned}$$

Pearson correlator:

$$rac{\left\langle v_2^2 \delta p_{
m T}
ight
angle}{\sqrt{{
m var}ig(v_2^2ig) \left\langle \delta p_T \delta p_T
ight
angle}} \sim -\cos(3\gamma)eta^3 \ pprox -\cos(3\gamma)eta^3 \ pprox -eta^3$$

Negative contribution

pT skewness:

$$\left<(\delta p_{
m T})^3\right>\sim\cos(3\gamma)eta^3$$

Positive contribution

Results

The ordering between U+U and Au+Au follow the expectation

Much dramatic influence for three-particle correlators.

Influence largest in central collisions, but impacts the full centrality range.

Model comparisons

Phys. Rev. C 102, 034905 (2020)

Trends reproduced by the IP-Glasma+Hydro model from B.Schenke

Reasonable description of v_2 and ρ_2 , over-predicts p_T fluctuations. Constrains from central data based on IP-Glasma $\rightarrow \beta \sim 0.28 \pm 0.03$ Further improvement on the initial condition in the model is needed.

Summary

- Azimuthal and radial flow → shape and size fluctuations of initial state
 - Inferred from fluctuations in v_n , $[p_T]$ and v_n - $[p_T]$ correlations

Linear response approximation:
$$\epsilon_{
m n} o v_{
m n} \qquad rac{1}{R} o [p_{
m T}] \qquad \langle \epsilon_{
m n}^2 rac{1}{R}
angle o \langle v_{
m n}^2 \ p_{
m T}
angle$$

These observables are sensitive to the quadrupole deformation parameter

$$ho = rac{
ho_0}{1 + e^{(r - R_0(1 + eta[\cos(3\gamma)Y_{20} + \sin(3\gamma)Y_{22}])/a}}$$

- Compared to Au+Au, results from U+U collisions show
 - Enhance v_2 , $[p_T]$ and v_2 - $[p_T]$ fluct: γ_U =0, large β_U
 - Effects largest in central collisions, but also observed in mid-central collisions.
 - → nuclear deformation influences collisions over a wide centrality range.
- Qualitatively described by hydro model.
 - Central data where deformation is most import, implies large β_U .
 - Estimate based on comparison of $\rho(v_2^2, p_T)$ with IP-Glasma prefers: $\beta \sim 0.28 \pm 0.03$
 - Data can improve model tuning and provide new ways to probe nuclear structure.