

Contribution ID: 858 Type: Poster

Probing the nuclear deformation effects in Au+Au and U+U collisions from STAR experiment

Wednesday 6 April 2022 18:34 (4 minutes)

Nuclear deformation is an ubiqutous phenomenon for most atomic nuclei, reflecting collective motion induced by interaction between valance nucleons and shell structure. In most cases, the deformation has a quadrupole shape that is characterized by overall strength β_2 and triaxiality γ (prolate $\gamma=0$, obolate $\gamma=\pi/3$ and triaxial otherwise). Collisions of deformed nuclei lead to large shape and size fluctuations in the initial state geometry, which after collective expansion, lead to enhanced fluctuation of elliptic flow v_2 and event-by-event mean transverse momentum $[p_T]$. Therefore, detailed study of the v_2 , and $[p_T]$ and correlations beween them can constrain the deformation parameters (β_2, γ) . A comparion of (β_2, γ) with those measured from nuclear structure experiment could then be used to constrain the hydrodynamic responses of heavy-ion collisions. In this poster, we present results of v_2 , $[p_T]$ fluctuations and $v_2^2 - [p_T]$ correlation for harmonics n = 2, 3, 4in modestly-deformed ¹⁹⁷Au+¹⁹⁷Au collisions at 200 GeV and highly-deformed ²³⁸U+²³⁸U collisions at 193 GeV. Significant differences for mean, variance c_2 and skewness c_3 of $[p_T]$ fluctuations, are observed between the two systems as a function of centrality. The $v_2^2 - [p_T]$ results remain positive over the full centrality in Au+Au collisions, while they change sign in 0-5\\% central U+U collisions. The ratio of v_2 and c_2 between U+U and Au+Au in ultra-central collisions (UCC) are used to constrain the value of β_2 , which leads to an estimate of $\beta_{2Au} \sim 0.18$. On the other hand, the value of γ can be constrained from the ratios of $v_2^2 - [p_T]$ and c_3 between U+U and Au+Au. The enhancement of c_3 and the suppression of $v_2^2 - [p_T]$ in UCC confirm that Uranum is prolate deformed with $\gamma \sim 0$. Comparison with state-of-art model calculations is discussed.

Authors: JIA, Jiangyong (Stony Brook University (US)); STAR COLLABORATION

Presenter: JIA, Jiangyong (Stony Brook University (US))

Session Classification: Poster Session 2 T01

Track Classification: Initial state physics and approach to thermal equilibrium