

Production of charm hadrons in *p*Pb collisions with LHCb

Yiheng Luo, Tsinghua University on behalf of LHCb collaboration

29TH INTERNATIONAL CONFERENCE ON ULTRARELATIVISTIC NUCLEUS - NUCLEUS COLLISIONS APRIL 4-10, 2022 KRAKÓW, POLAND

Introduction

- Cold nuclear matter effects (CNM) are assumed to be dominant in *p*Pb collisions.
 - Modification of nuclear parton distribution functions (nPDFs).
 - Other initial/final state effects.
- Production cross-sections of open charm and charmonia are used to probe CNM and constrain nPDFs at small-x and mid-x region in pPb collisions at LHCb.

LHCb Detector and Datasets

- A single-arm forward spectrometer, covering the pseudorapidity range of $2 < \eta < 5$; designed for studying particles containing *b* or *c* quarks down to low- p_T .
 - > Vertex detector: IP resolution $(15+29/p_T)\mu m$; time resolution 45fs
 - > Tracking system: ε (tracking)~96%; $\delta p/p \sim 0.5 \sim 1\%(5 200 \text{GeV})$
 - ➢ Magnet: bending pow (4 Tm)
 - > RICH ($K/\pi/p$ separation)

Datasets of D^0 , Λ_c^+ and J/ψ collected in *p*Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV from LHCb.

> *p*Pb system boosted in laboratory frame:

$$y^* = y_{lab} - 0.465$$

Rapidity acceptance:

Forward (*pPb*): $1.5 < y^* < 4.0$ Backward (Pb*p*): $-5.0 < y^* < -2.5$, common region: $2.5 < |y^*| < 4.0$ *pp* reference: 2.0 < y < 4.5

Luminosity: $pPb: 1.06 \text{ nb}^{-1} + Pbp: 0.52 \text{ nb}^{-1}.$

Analysis Strategy

- D^0 , Λ_c^+ and J/ψ are fully reconstructed through $D^0 \to K^-\pi^+$, $\Lambda_c^+ \to pK^-\pi^+$ and $J/\psi \to \mu^+\mu^-$ decays (charge conjugate).
- Background components are subtracted using invariant mass.
- Prompt and secondary yields separated using impact parameter (D^0 and Λ_c^+) or pseudo-proper time (J/ψ).
- Nuclear modification factor and forwardbackward ratio are measured to study CNM effects:

$$R_{pPb} = \frac{d^2 \sigma_{pPb}/dp_T dy^*}{A \times \sigma_{pp}/dp_T dy^*}, A = 208.$$

$$R_{FB}(p_T, y^*) = \frac{d^2 \sigma_{pPb}(p_T, +|y^*|)/dp_T dy^*}{d^2 \sigma_{Pbp}(p_T, -|y^*|)/dp_T dy^*}.$$

• Baryon over meson ratio is sensitive to hadronization:

$$\succ R_{\Lambda_c^+/D^0} \equiv \frac{\mathrm{d}^2 \sigma_{\Lambda_c^+}}{\mathrm{d}^2 \sigma_{D^0}}$$

Results: R_{pPb} , R_{FB} and $R_{\Lambda_c^+/D^0}$

- $R_{pPb}(D^0, J/\psi)$ as a function of rapidity shows a strong suppression at positive rapidity, while it is compatible with no suppression at negative rapidity. At positive rapidity region $R_{pPb}(D^0)$ also consistent with CGC, with a proper saturation scale.
- $R_{\rm FB}$ consistent with calculations using nPDFs with less uncertainties.
- $R_{A_c^+/D^0}$ similar in *p* and Pb beam directions. Generally consistent with expectations from *pp* data, hint of discrepancy at high p_T for proton beam direction.

Summary and outlook

- LHCb has strong capabilities to study heavy flavor in heavy-ion collisions.
- Studied charm production of open charm D^0 , Λ_c^+ and charmonia J/ψ at LHCb:
 - ➢ Precise data for prompt D^0 down to zero- p_T : strong suppression in proton beam direction. Moderate nuclear effect at lead beam direction, hint of enhancement for extreme rapidity
 - Nuclear modification factor R_{pPb} of J/ψ is updated with pp data, consistent with nPDFs predictions.
 - Prompt $R_{\Lambda_c^+/D^0}$ cross-section ratio consistent with expectation at low, possible discrepancy at high at positive rapidity.
- More production measurements in *p*Pb collisions (√*s_{NN}* = 5.02, 8.16 TeV) at LHCb:
 ➢ Example: *D*⁺, *D*⁺_s, *D*^{*+}, Ξ⁺_c, ..., correlations, track multiplicity dependence.