Strangeness Enhancement in Small System at LHCb

Chenxi Gu, Tsinghua University on behalf of the LHCb collaboration

29TH INTERNATIONAL
CONFERENCE ON ULTRARELATIVISTIC
NUCLEUS - NUCLEUS COLLISIONS
APRIL 4-10, 2022
KRAKÓW, POLAND

Motivation

- Strangeness enhancement was one of the first proposed signatures of quark-gluon plasma(QGP) formation in heavy ion collisions
 - rangeness production proceeds mainly via gluons in QGP.
 - \triangleright s quark mass lower than QGP critical temperature T_c , $s\overline{s}$ quark pairs can be produced thermally.
- Recently, enhanced strangeness production is observed in high multiplicity *pp* and *p*Pb collisions.

A significant enhancement of strange to nonstrange hadron production is observed with increasing particle multiplicity in *pp p*-Pb Pb-Pb collisions.

Nature Phys **13,** 535–539 (2017)

LHCb detector and Datasets

- A single-arm spectrometer in the forward direction, charm & beauty factory
 - \triangleright Vertex Locator (20 μ m IP resolution)
 - ightharpoonup Tracking system ($\Delta p/p = 0.5 1.0\%$)
 - \triangleright RICH: p/K/ π separation
 - > Flexible software trigger
- pp data was taken in 2016+2017+2018 with 5.4 fb⁻¹.
- *p*Pb data was taken in 2016 with asymmetric collision configuration.
 - ➤ Forward (*p*Pb)
 - ➤ Backward (Pbp)
 - \triangleright Luminosity : 13.6 nb⁻¹(*p*Pb) + 20.8 nb⁻¹(Pb*p*)
- Beam characteristics
 - ➤ 6500 GeV proton beam and 2560 GeV/nucleon Pb beam
 - \triangleright Center of mass rapidity shift $y^* y_{lab} = -0.465$ in direction of proton

Forward 5m Magnet SPD/PS MI M3 M4 M5 PD Pb Vertex LOcator 5m 10m 15m 20m z

LHCb, JINST 3 (2008) S08005 LHCb, IJMPA 30 (2015) 1530022

Strangeness enhancement with B mesons in pp collisions at 8.16TeV

- Ratio of B_s^0/B^0 cross sections versus multiplicity, in several pt bins
 - \triangleright Both states are simultaneously accessible in $J/\psi \pi^+\pi^-$.

Results: B_s^0/B^0 vs multiplicity

- Ratio increases with total multiplicity. At low multiplicity, consistent with fragmentation in vacuum.
- No significant dependence of forward B_s^0/B^0 production on backwards multiplicity. (Effect depends on local particle density)
- Modification mostly occurs at low pt, where most of the bulk particles are produced. High pt are unaffected and consistent with *ee* result.

Chenxi Gu, QM2022

0.3

Work in progress: D_s^+/D^+ ratio in pPb collisions at 8.16TeV

- We are studying strangeness enhancement in pPb collision by D_s^+/D^+ ratio, some clues have been seen.
 - Compared with B mesons, the statistics of D mesons are larger.

$$R_{D_s^+/D^+}(p_{\mathrm{T}}, y^*, \mathrm{PV} \; \mathrm{nTracks}) = \frac{N(D_s^\pm \to K^\mp K^\pm \pi^\pm)}{N(D^\pm \to K^\mp \pi^\pm \pi^\pm)} \times \frac{\mathcal{B}(D^\pm \to K^\mp \pi^\pm \pi^\pm)}{\mathcal{B}(D_s^\pm \to K^\mp K^\pm \pi^\pm)} \times \frac{\epsilon_{D^+}}{\epsilon_{D_s^+}}$$

