Anisotropic flows of $\phi\text{-meson}$ in Au+Au collisions at 7.2 GeV from STAR

Ding Chen, for the STAR Collaboration

University of California, Riverside

April 8, 2022

Motivation

- The ϕ -meson has small hadronic cross-section sensitive to early stage of collisions.
- BES-I shows hint of sign change of ϕ -meson dv_1/dy around 11.5 GeV, with large uncertainties.
- The minimum of net-proton and net-Λ dv₁/dy may indicate the softest point of Equation of State (EoS)¹. How are the φ-meson?
- Fixed-target (FXT) program at STAR enables us to scan a range of low collision energies that collider mode (COL) cannot reach ($\sqrt{s_{NN}} < 7.7$ GeV down to a minimum of 3 GeV).

¹L. Adamczyk et al. (STAR). Phys. Rev. Lett. 120 062301.
³K. C. Meehan for the STAR Collaboration. Nuclear Physics A. 956(2016) 878-881.

The ϕ -meson Reconstruction

- Kaons are identifed by dE/dx from TPC and mass² from TOF.
- Combinatorial background (Bkg) are from mixed-events and subtracted.
- Convention used in this analysis: $y = y_{Lab} - y_{mid}, y_{mid} = -2.02.$
- Fitting Function:
 - Sig : Gaussian + Constant
 - Bkg : 2nd order polynomial

Flow Extraction: Invariant Mass Method

- ϕ -meson v_1 is measured with respect to the first-order event plane (EP) from EPD ($-5.1 < \eta < -2.1$), corrected for the EP resolution R_1 .
- Fitting Function:
 - Sig + Bkg: $Y_R v_1^{Sig}(m_{inv}) + (1 Y_R) v_1^{Bkg}(m_{inv})$
 - $Y_R = \frac{Yields(Sig)}{Yields(Sig) + Yields(Bkg)}$
 - v_1^{Bkg} : Modeled by 2^{nd} order polynomial

Results and Summary

- FXT and COL modes follow similar trend. Combining FXT and COL data for higher statistics and greater coverage will improve the flow measurements.
- With decreasing $\sqrt{s_{NN}}$, the $dv_1/dy|_{y=0}$ of the ϕ -meson shows a trend of turning from negative to positive.
- This may indicate a softest point of EoS^3 for the ϕ -meson call for theory/model calculations.

³M.S. Abdallah et al. (STAR). Physics Letter B. 827(2022) 137003.

Ding Chen - Quark Matter 2022 (Krakow)