

Triggering For High-Multiplicity Events In *pp* Events In ATLAS.

Alexander Kevin Gilbert on behalf of The ATLAS Collaboration

AGH University of Science and Technology

Quark Matter 2022

ATLAS Trigger System

The ATLAS trigger system consists of two stages:

- Level 1 (L1) trigger: Consists of hardware. Max. 100 kHz recording rate
- High Level Trigger (HLT): Software trigger operates from a large farm of about 40,000 CPU cores.
 - => Consume plenty of resources.

Recording rate \sim 1.2 kHz.

The selected events are then passed on to a data storage system for offline analysis.

ZFinder

The ATLAS trigger ZFinder is an algorithm for finding an approximation of the *z*-position of the collision vertices without reconstructing charged particle tracks.

- Uses extrapolations of approximate helix lines through mulitplets of signal points from the tracking detectors.
- Provides the count (weight or multiplicity) of lines from signal points extrapolations to the vertex *z* position along beamline.
- Can be optimised for low, medium, and high pileup conditions to precisely estimate vertex position.
- Using two parameters that are tuned to data taking conditions and momentum range are histogram bin width, Δz , and allowed angular window $\Delta \phi$ for the three hits respectively.
- Will be used for High-Multiplicity Trigger (HMT) for the upcoming Run 3 high-luminosity *pp* and *p*-Pb to save resources without losing the efficiency.

Illustrations

Left figure illustrates the longitudinal view of the collision inside ATLAS pixel detector with the barrel and end cap on both sides. Red-dashed lines are z-axis projection of extrapolation from the signal hits in the pixel-barrel detector to the vertex location. Narrow Δz bins can cause vertex split. Right figure illustrates the transverse view of the collision and the meaning of the $\Delta \phi$ parameter. Lower $p_{\rm T}$ particles are bent harder in magnetic field, so increasing $\Delta \phi$ means accepting more low $p_{\rm T}$ particles.

Counting Lines Into Histogram

The ZFinder counts each extrapolated line that belongs to certain z position into a histogram bin. The histogram is the results of running the algorithm for a one event with two sets of parameters, default for high pile-up pp running conditions (black, dotted) and one with parameters optimised for low pile-up (red line) that uses triplets from the pixel barrel and larger values of $\Delta z = 3.5$ mm and $\Delta \phi$ =0.5. The later gives better signal (value at peak) to noise (value around the peak) ratio.

Some Results

Left: Correlation of the number of triplets in the largest peak found by the Z-Finder algorithm in an event versus the number of charged particle tracks in an event of $p_{\rm T} > 0.2$ GeV and $|\eta| < 1$.

Right: The efficiencies as functions of number of offline tracks for various number of pixel-barrel triplets ($N_{triplet}$) thresholds.

Summary And Outlook

Number of offline tracks

References to the figure and plots:

- JINST 15 (2020) P100
- HLT Tracking Public Results

- In Run 3, this algorithm will used for HMT in ATLAS.
- The efficiency plot on the left shows that the performance is good regardless of the pile-up.
- Therefore the ZFinder will save resources without losing the efficiency.