Vector resonances spin alignment as a probe of spin hydrodynamics and freeze-out

Presented by:

Kayman Jhosef Carvalho Gonçalves kaymang@ifi.unicamp.br

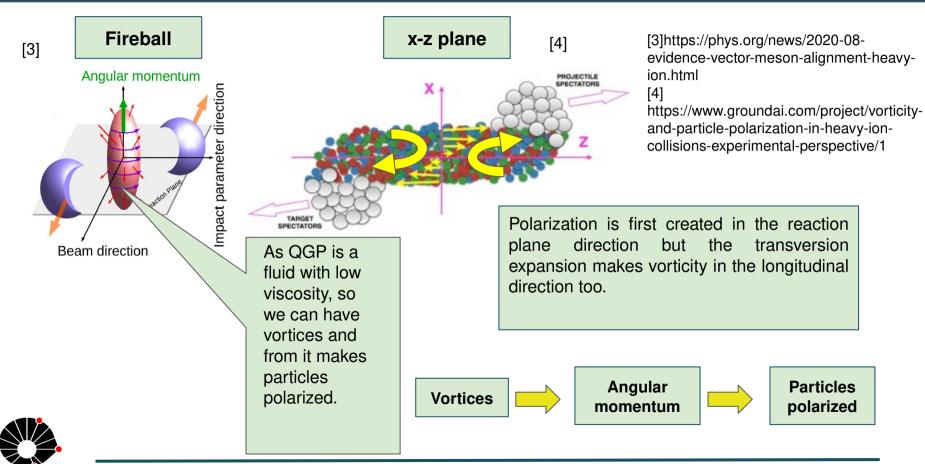
In collaboration with:

Donato Giorgio Torrieri

Based on:

https://arxiv.org/abs/2104.12941

Polarization in QGP



UNICAMP

Theoretical Uncertainty

What we can learn about particle production models using the alignment in quark-gluon plasma (QGP):

- Cooper-Frye Model
 - 1.1 If spin and vorticity are in equilibrium, one expects that Cooper-Frye is a good estimate.
 - 1.2 This means that the density matrix is not a coherent state.
- 2. Coalescence Model
 - 2.1 If spin and vorticity are not in equilibrium, so coalescence model is a good estimation.
 - 2.2 This means that the density matrix is a coherent state.

The connection between theory and experiment

Making the transformation to the lab frame

$$ho\left(n_{3},n_{8}, heta_{r},\phi_{r}
ight)=U\left(heta_{r},\phi_{r}
ight)
ho_{8}\left(n_{3},n_{8}
ight)U^{-1}\left(heta_{r},\phi_{r}
ight)$$

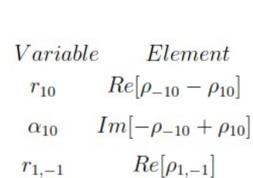
From this density matrix, we can obtain the following system equation:

$$\frac{1}{12} \left(3 \left(n_8 - \sqrt{3} \, n_3 \right) \cos \left(2\theta_r \right) - \sqrt{3} \, n_3 + n_8 + 4 \right) = \rho_{00}$$

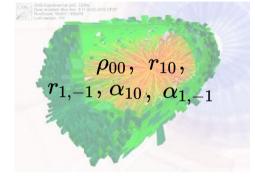
$$\frac{\left(n_8 - \sqrt{3} \, n_3 \right) \sin \left(\theta_r \right) \cos \left(\theta_r \right) \cos \left(\phi_r \right)}{\sqrt{2}} = r_{10}$$

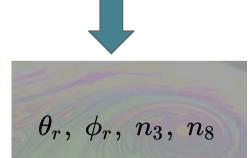
$$-\frac{\left(\sqrt{3} \, n_3 + 3n_8 \right) \sin \left(\theta_r \right) \sin \left(\phi_r \right)}{3\sqrt{2}} = \alpha_{10}$$

$$\phi_r = -\frac{1}{2} \tan^{-1} \left(\frac{\alpha_{1,-1}}{r_{1,-1}} \right)$$



 $\alpha_{1,-1}$ $Im[\rho_{1,-1}]$



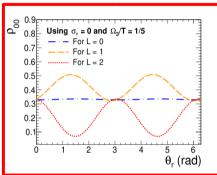


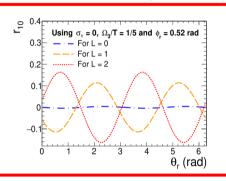
Coalescence model

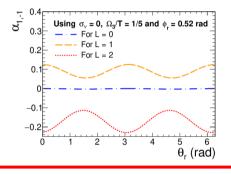
Matrix density for meson with vortice is given by:

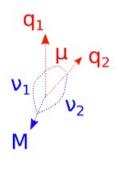
$$(\hat{\rho}^{M})_{mn} = \sum_{ijkl} (P_{12}^{L})_{ijklmn} U_{S}(\phi_{r}, \theta_{r}) (U_{\omega}(\mu_{1}, \nu_{1})\rho^{1}(\Omega)U_{\omega}^{-1}(\mu_{1}, \nu_{1}))_{ij} \times (U_{\omega}(\mu_{2}, \nu_{2})\rho^{2}(\Omega)U_{\omega}^{-1}(\mu_{2}, \nu_{2}))_{kl} U_{S}^{-1}(\phi_{r}, \theta_{r})$$

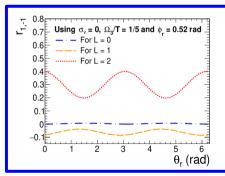
The density matrix coefficients are given by:

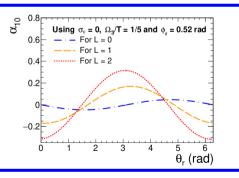


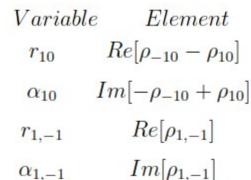












Conclusions and Perspectives

- If spin and vorticity are in equilibrium, one expects that Cooper-Frye is a good estimate. This means that SU(3) element is not a coherent state, but rather a superposition of Eigenstates of ω an type Hamiltonian where ω_J is the total angular momentum.
- If spin and vorticity are not in equilibrium, so coalescence model is a good estimation. This means that the density matrix is a coherent state for some choice $n_3,\ n_8,\ \theta_r$ and ϕ_r .
- The next step is to use a numerical code that to solve a diffusion equation coupled to the hydro output:

Numerical hydrodynamic calculation $\phi_r,\theta_r,\nu,\Omega \qquad \qquad (\hat{\rho}^M)_{m',m''}$

