Study of J/ ψ elliptic flow in $\mathrm{Zr}+\mathrm{Zr}$ and Ru+Ru collisions at

$\sqrt{\mathbf{s}_{\mathrm{NN}}}=200 \mathrm{GeV}$ with the STAR experiment

 -${ }^{a}$ National Cheng Kung University, ${ }^{b}$ Purdue University

Abstract

Quarkonia, bound states of heavy-flavor quark-antiquark pairs, are unique probes of the hot and dense matter produced in relativistic heavy-ion collisions. The observed suppression of J / Ψ production in nucleus-nucleus collisions at RHIC is considered to be a strong experimental evidence of creation of quark-gluon plasma. However, in order to correctly interpret those results, various hot and cold nuclear effects need to be distinguished. Results on elliptic flow (v_{2}) of the J/ ψ mesons provide important information on the interaction of the heavy quarks with the QGP as well as on mechanism of the quarkonia production in the presence of the deconfined partonic phase. Measurements of $\mathrm{J} / \psi \mathrm{v}_{2}$ in different collision systems and energies provide unique and important insight into the properties of the created medium.

STAR experiment

Dataset and event selections

- Zr+Zr and Ru+ Ru at 200 GeV
- BEMC High Tower triggers
- J/ ψ candidates:
- Leading $\mathrm{e}^{ \pm} \mathrm{p}_{\mathrm{T}}>3.5$ or $4.3 \mathrm{GeV} / \mathrm{c}$
- Subleading $e^{ \pm} p_{T}>0.8 \mathrm{GeV} / \mathrm{c}$
- $\left|\eta_{\mathrm{e}^{ \pm}}\right| \leq 1$
- Event plane (ψ) :
- TPC event plane method [2]
- $0.2<\operatorname{track} \mathrm{p}_{\mathrm{T}}<2 \mathrm{GeV} / \mathrm{c}$
- $\left|\eta_{\text {track }}\right| \leq 1$
- Recentering and shifting

$\mathrm{J} / \psi \mathrm{V}_{2}$ determination

- $\mathrm{v}_{2}^{\text {obs }}=\frac{\sum_{\mathrm{i}} \cos \left[2\left(\phi-\psi_{2}\right)\right]_{\text {sig }+ \text { bkg } i}-\sum_{\mathrm{j}} \cos \left[2\left(\phi-\psi_{2}\right)\right]_{\text {bkg } j}}{} \cdot \psi_{2}$ is second order event plan
- $\mathrm{v}_{2}=\mathrm{v}_{2}$ obs. / event plane resolution
- Event plane resolution based on the sub-event method [2]

Systematic uncertainties

- Signal extraction: using different signal and background functions
- TPC tracking: varying track quality cuts

Summary and Outlook

- $J / \psi \mathrm{V}_{2}$ in isobaric collisions will provide information on QGP properties
- Analysis procedure is presented
- Minimum-bias dataset is also analyzed to provide better precision at lower p_{T}
- Stay tuned for the physics results

References

1. L. A. et al. (STAR Collaboration), Phys. Rev. Lett., 111, 052301 (2013)
2. A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C, 58, 1671 (1998)
