Checking Non-Flow Assumptions and Results via PHENIX Published Correlations in p+p, p+Au, d+Au, and ³He+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$ [Phys. Rev. C 105, 024906 (2022)]

> Jamie Nagle (University of Colorado Boulder) Ron Belmont (University of North Carolina at Greensboro) Sanghoon Lim (Pusan National University) Blair Seidlitz (Lawrence Berkely National Laboratory)

> > Quark Matter 2022 Poster Session 6 March 2022

J.L. Nagle et al, Phys. Rev. C 105, 024906 (2022)

• Closure is considerably violated in AMPT

• Closure is considerably violated in AMPT and PYTHIA/Angantyr

- Closure is considerably violated in AMPT and PYTHIA/Angantyr
- Since AMPT has too much non-flow and PYTHIA doesn't have any flow, the degree of overcorrection in real data is likely not as bad as it is with these generators

- Closure is considerably violated in AMPT and PYTHIA/Angantyr
- Since AMPT has too much non-flow and PYTHIA doesn't have any flow, the degree of overcorrection in real data is likely not as bad as it is with these generators
- Non-flow over-subtraction also explored in S. Lim et al, Phys. Rev. C 100, 024908 (2019)

- Since the template method over-corrects the raw BBCS-FVTXS-CNT v_3 , the truth is likely in between
- A firm understanding of this could shed a lot of light on various physics scenarios...

J.L. Nagle et al, Phys. Rev. C 105, 024906 (2022)

• The standard PHENIX v_3/v_2 is lower than the ATLAS, while the non-flow corrected is above

J.L. Nagle et al, Phys. Rev. C 105, 024906 (2022)

The standard PHENIX v₃/v₂ is lower than the ATLAS, while the non-flow corrected is above
 The ratio is expected to be lower for lower collision energies in almost all physics scenarios

 Lower energy, shorter lifetime, more damping of higher harmonics

Longitudinal dynamics in small systems

- $dN_{ch}/d\eta$ from AMPT, $v_3(\eta)$ from (super)SONIC
- The likely much stronger pseudorapidity dependence of v_3 compared to v_2 is an essential ingredient in understanding different measurements with different kinematic acceptance

Extra Material

J.L. Nagle et al, Phys. Rev. C 105, 024906 (2022)

 The BBCS-FVTXS-CNT combination minimizes non-flow, so subtraction doesn't make too much difference

- The BBCS-FVTXS-CNT combination minimizes non-flow, so subtraction doesn't make too much difference
- The FVTXS-CNT-FVTXN combination has more non-flow, and the subtraction does much more
- That the three different combinations all line up after non-flow subtraction seems to lend some credence thereto, but one must be careful...

- The BBCS-FVTXS-CNT combination minimizes non-flow, so subtraction doesn't make too much difference
- The FVTXS-CNT-FVTXN combination has more non-flow, and the subtraction does much more
- That the three different combinations all line up after non-flow subtraction seems to lend some credence thereto, but one must be careful...

J.L. Nagle et al, Phys. Rev. C 105, 024906 (2022)

• There's a larger relative change for v_3 compared to v_2 , but the smaller value of v_3 makes the non-flow subtraction more sensitive to non-closure

- There's a larger relative change for v_3 compared to v_2 , but the smaller value of v_3 makes the non-flow subtraction more sensitive to non-closure
- For the combinations with more non-flow, where the v_3 is imaginary in p+Au and d+Au, the non-flow subtraction is completely uncontrolled

- There's a larger relative change for v_3 compared to v_2 , but the smaller value of v_3 makes the non-flow subtraction more sensitive to non-closure
- For the combinations with more non-flow, where the v_3 is imaginary in p+Au and d+Au, the non-flow subtraction is completely uncontrolled