Checking Non-Flow Assumptions and Results via PHENIX
Published Correlations in $p+p$, $p+Au$, $d+Au$, and 3He+Au at $\sqrt{s_{NN}} = 200$ GeV [Phys. Rev. C 105, 024906 (2022)]

Jamie Nagle (University of Colorado Boulder)
Ron Belmont (University of North Carolina at Greensboro)
Sanghoon Lim (Pusan National University)
Blair Seidlitz (Lawrence Berkeley National Laboratory)

Quark Matter 2022
Poster Session
6 March 2022
Additional non-flow studies using published data tables

Closure is considerably violated in AMPT

R. Belmont et al
Quark Matter 2022, 6 March 2022 - Slide 2
Closure is considerably violated in AMPT and PYTHIA/Angantyr
Closure is considerably violated in AMPT and PYTHIA/Angantyr

Since AMPT has too much non-flow and PYTHIA doesn’t have any flow, the degree of overcorrection in real data is likely not as bad as it is with these generators
Additional non-flow studies using published data tables

Closure is considerably violated in AMPT and PYTHIA/Angantyr

Since AMPT has too much non-flow and PYTHIA doesn’t have any flow, the degree of overcorrection in real data is likely not as bad as it is with these generators

Non-flow over-subtraction also explored in S. Lim et al, Phys. Rev. C 100, 024908 (2019)
Since the template method over-correction the raw BBCS-FVTXS-CNT v_3, the truth is likely in between.

A firm understanding of this could shed a lot of light on various physics scenarios...
The standard PHENIX v_3/v_2 is lower than the ATLAS, while the non-flow corrected is above.
The standard PHENIX v_3/v_2 is lower than the ATLAS, while the non-flow corrected is above.
The ratio is expected to be lower for lower collision energies in almost all physics scenarios—Lower energy, shorter lifetime, more damping of higher harmonics.
Longitudinal dynamics in small systems

- $dN_{ch}/d\eta$ from AMPT, $v_3(\eta)$ from (super)SONIC
- The likely much stronger pseudorapidity dependence of v_3 compared to v_2 is an essential ingredient in understanding different measurements with different kinematic acceptance
Extra Material
Additional non-flow studies using published data tables

- The BBCS-FVTXS-CNT combination minimizes non-flow, so subtraction doesn’t make too much difference
The BBCS-FVTXS-CNT combination minimizes non-flow, so subtraction doesn’t make too much difference.

The FVTXS-CNT-FVTXN combination has more non-flow, and the subtraction does much more.

That the three different combinations all line up after non-flow subtraction seems to lend some credence thereto, but one must be careful...
The BBCS-FVTXS-CNT combination minimizes non-flow, so subtraction doesn’t make too much difference.

The FVTXS-CNT-FVTXN combination has more non-flow, and the subtraction does much more.

That the three different combinations all line up after non-flow subtraction seems to lend some credence thereto, but one must be careful...
• There’s a larger relative change for v_3 compared to v_2, but the smaller value of v_3 makes the non-flow subtraction more sensitive to non-closure
• There’s a larger relative change for v_3 compared to v_2, but the smaller value of v_3 makes the non-flow subtraction more sensitive to non-closure

• For the combinations with more non-flow, where the v_3 is imaginary in $p+Au$ and $d+Au$, the non-flow subtraction is completely uncontrolled
There’s a larger relative change for v_3 compared to v_2, but the smaller value of v_3 makes the non-flow subtraction more sensitive to non-closure.

For the combinations with more non-flow, where the v_3 is imaginary in $p+Au$ and $d+Au$, the non-flow subtraction is completely uncontrolled.