Sub-nucleon geometry and multiparticle cumulants including $c_2\{4\}$ in $p + p$ collisions

Xin-Li Zhao1

Collaborators: Zi-Wei Lin2, Liang Zheng3 and Guo-Liang Ma1

1Fudan University, Shanghai, China
2East Carolina University, Greenville, USA
3China University of Geosciences, Wuhan, China
Developed Versions of the String Melting AMPT

1. New quark coalescence model.
2. Improved heavy quark productions.
4. Sub-nucleon geometry of the proton which consists of 3 constituent quarks.

Normal AMPT includes 1-3.
3-quark AMPT includes 1-4.
In normal AMPT, $c_2\{2\}$ for 0.3 mb and 3 mb are close to the data.

In 3-quark AMPT, $c_2\{2\}$ for 3 mb is close to the data.

In normal AMPT, $c_2\{4\} < 0$ at $N_{ch} > 32$ for 0.3 mb.

In 3-quark AMPT, $c_2\{4\}$ results have a similar multiplicity dependence as the data.

$c_2\{4\}$ has a non-monotonous dependence on σ.

arXiv:2112.01232
Various p_T Selections of $c_2\{4\}$

- The model results show the same qualitative behavior as data.
- $c_2\{4\}$ magnitudes from AMPT are often quite different from data.
- $c_2\{4\}$ and its sign-changed location depend sensitively on the sub-nucleon geometry for proton.

arXiv:2112.01232

Xinli Zhao @ QM2022
c_2\{4\} in normal AMPT and 3-quark AMPT produce negative values at high multiplicities.

c_2\{2\} and c_2\{4\} depend strongly on σ and the dependences at high multiplicities are non-monotonous.

AMPT results with a constant σ can’t well reproduce the ATLAS c_2\{2\} and c_2\{4\} data.

3-quark AMPT results are in better agreements with the experimental data than the normal AMPT. This indicates the importance of including the sub-nucleon geometry of the proton in studies of multiparticle cumulants in p + p collisions.