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Introduction

e at LHC, the ALICE collaboration measured the yields of light nuclei [1]
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Left: Hadron abundances and statistical hadronization model predictions [2]; Right: Space-
time diagram of a HIC [3].

e why do these ”snowballs in hell” exist?
e nucleosynthesis in heavy-ion collisions can be described by the Saha equation [4]

e we use the principle of detailed balance to construct rate equations for the light nuclei
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e the important reactions are of the following type: 44 = < et Z>NX(_NA +R-N§)
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e where R = —=—, A 1s a light nucleus and X 1s a caltalysing Pion or Kaon
N

e have to determine the averaged cross sections, the volume and the multiplicities in chemical
equilibrium 1n dependence of T

e particles: nucleons, the light nucle1 and their corresponding anti-particles, w, p, ®, K, K™,
A, A, Y, ¥ and Q

Thermal averaged cross sections
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e average over Boltzmann distribution: <G Y > — - -
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e the known cross sections are taken from the PDG [5]

e we are Interested 1n the case were the nuclei are splited in their nucleonic constituents —
inelastic cross sections

Thermal Model and Saha equation

e in the analytical approach: system 1s dominated by effectively massles pions and expand
isentropicly : V o< T3

e for all particles without the pions the non-relativistic approximation 1s used:
3
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o using N(T,) = Ni(T) and p(T.) = 0 [41: w(T) =37 In(£) +m(1 ~ 1)
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e this result 1s different to the standard thermal model result N,(T) = |7 ) e T~ T
“\stand. ¢

e major difference is in the exponential: O'(2MeV ) ~ By < my ~ O (1000MeV)

e t0 gain the full solution (HRG in PCE) we need to consider also the contributions of the
other particles [4]
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° <n,> _1s the averaged number of stable hadrons 1 which came from the decay(-chain) of
J

hadron |

e the chemical potentials are given as [I; = Ziemble<ni> W;; J € allparticles
J

e by solving the set of non-linear equations we will get V(T), u;(T), up(T) and us(T)
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Left: The u;’s of the as stable considered hadrons 1in dependence of T; Right: The volume
ratio in dependence of T.

Solving the rate equations

e for all light nuclei up to He* rate equations has been implemented, but also the decays of
p, ®, K* and A has been considered

e we have just related the volume and temperature, but the system contains ODE’s 1n time
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e here we consider a parametrisation V (7) [6]: 5~ = T 1= 0.5 1oy = 97
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3*Equilibrium
—— Nucleosynthesis after 90 MeV
—— Nucleosynthesis after 100 MeV
—— Nucleosynthesis after 120 MeV
—— Nucleosynthesis at 155 MeV
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Left: The ratio of deuterons to protons normalized to the same ratio at equilibrium for dif-
ferent initial conditions with g5 = 2g,.; Right: solid lines represent the results of the rate
equations, while dashed curves show the result of the HRG in PCE. The colored bands rep-

resent the experimental data (ALICE).

Effect of the N + N <~ 57 reaction

e a big advantage of the rate equation approach 1is the possibility of the annihilation of stable
hadrons e.g. nucleons

e the averaged cross section 1s about S0mb for p + p scattering

e this type of reaction exlicitly violates the conservation of stable hadrons, but the net baryon
number 1s still conserved
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e Normalised particle number of deuterons to the value at T, = 155MeV and g = 2g,

Conclusions and outlook

e both approaches are 1n great agreement with each other and also 1n the error range of the
experimental data

e under-occupation in the nucleons leads to a suppression of the light nuclei

e calculations also support earlier assumptions, that the nuclel do not need to be formed at
the chemical freeze-out

e the same procedure could be done for RHIC or SPS energies

e this approach neglects the formation time of the nucle1

¢ a quantum mechanical description of creation and decay of bound states (the nuclel) 1n an
open thermal system (fireball) 1s needed

e for look up: Physics Letters B 827 (2022) 136891
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