

Soft photon radiation in hadronic collisions: color dipole description

M. Krelina*, B. Kopeliovich, K. Reygers

Abstract:

The Low theorem, proven only for diffractive photon radiation, cannot be extended to inelastic hadronic collisions with multi-particle production. Comparison with incorrect calculations led to the so-called soft-photon puzzle. We describe soft photon production within the color-dipole approach. The required quark distribution in the colliding hadrons at a soft scale is calculated employing the popular quark-gluon string model (QGSM). The dipole cross section is parametrized and fitted to HERA DIS data at low Q^2 . Our results are in good accord with data on low- k_T photon yield in pp inelastic collisions.

^{*}michal.krelina@fjfi.cvut.cz

Challenge

- We want to describe p_T distribution of direct photons
- Considering scale $Q^2 = p_T^2$, at low p_T we are:
 - Out of perturbative QCD, i.e. no QCD parton model
 - Below minimal Q_0^2 used by most od PDFs parametrization
- We can use the Color dipole model
 - No limitation on low Q^2 or p_T
 - We need projectile proton quark distribution...
- Solution: Quark-Gluon String Model (QGSM) or Dual Parton Model inspired quark distribution
 - Regge-based model
 - The production of a particle corresponds to the cut-pomeron pole contribution in the elastic scattering amplitude

QGSM references:

A. B. Kaidalov, Phys. Atom. Nucl. 66 (2003) 1994-2016.

Color dipole model approach

Invariant cross section

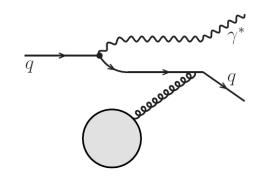
$$E\frac{d^3\sigma}{d^3p} = K(s, y, p_T) \int_{x_1}^1 \frac{d\alpha}{\alpha^2} f_{q/p}^{(n)} \left(\frac{x_1}{\alpha}\right) \frac{d^3\sigma^{qp \to \gamma X}}{d(\ln \alpha) d^2 p_T}$$

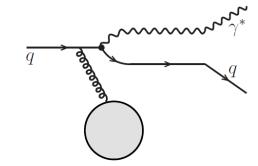
kinematic factors

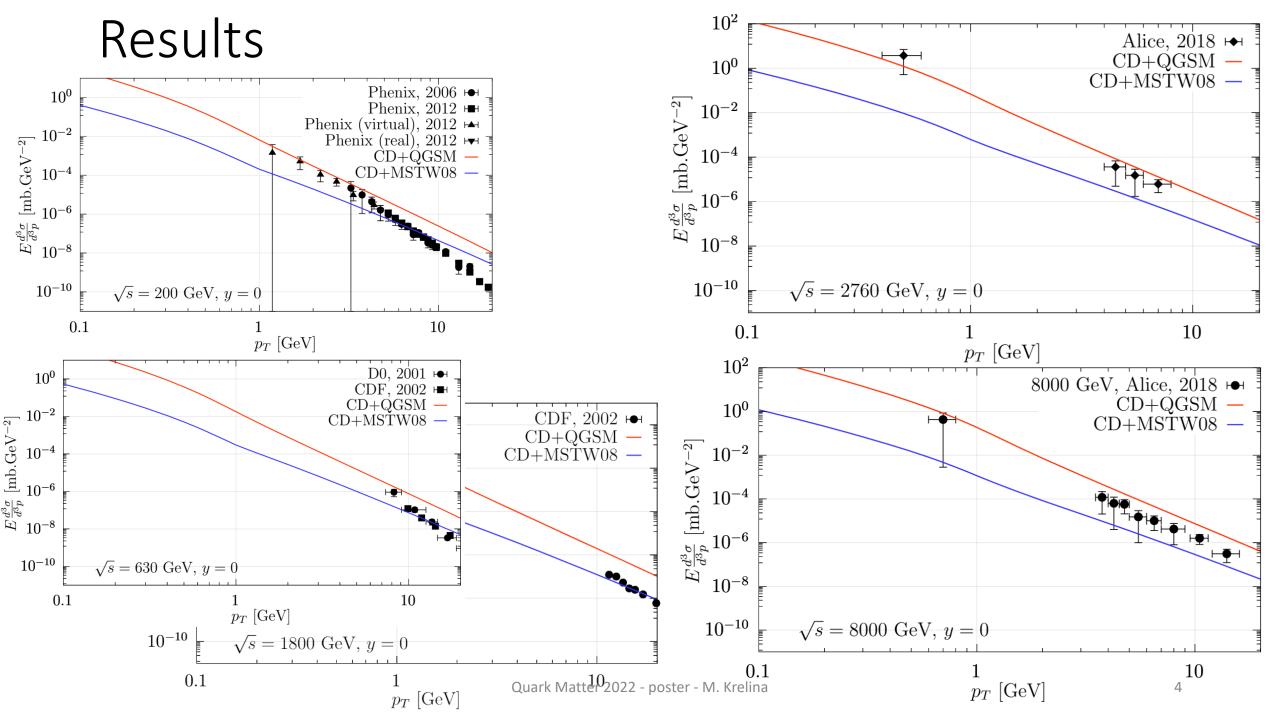
Quark-target interaction

quark distribution from QGSM of PDF

Standard quarknucleon interaction within color dipole model


 $\frac{d^3\sigma^{(qN\to\gamma X)}}{d(\ln\alpha)d^2p_T} = \frac{1}{(2\pi)^2} \int d^2\rho_1 \, d^2\rho_2 \, e^{i\vec{p}_T(\vec{\rho}_1 - \vec{\rho}_2)} \Psi_{\gamma^*q}^*(\alpha, \vec{\rho}_2) \Psi_{\gamma^*q}(\alpha, \vec{\rho}_1) \sigma_{\gamma}(\vec{\rho}_1, \vec{\rho}_2, \alpha)$


 $q \rightarrow q \gamma$ wave function


Dipole cross section

- Quark distribution
 - High p_T standard PDF
 - Low p_T QGSM inspired quark distribution

$$x f_{u_n/p}^{(n)}(x) = C_u x^{-\alpha_R} (1-x)^{\alpha_R - 2\alpha_B + n - 1}$$

Conclusions

- Color dipole model an ideal tool to describe low and high p_T
 - However, different quark distribution for low and high p_T needed
- Novel approach to low p_T quark distribution inspired by QGSM
- We reached reasonable description of experimental data

Outlook

- Describe data on soft photons from WA102
- Study limits and creating form factor of QGSM quark distribution to PDFs
- Parallel theoretical work on misuse of Low's theorem (B. Kopeliovich)
- Can we explain low- p_T direct photons excess in *Pb-Pb* collisions?