

Angular correlations of heavy-flavour decay electrons and charged particles in pp collisions at \sqrt{s} = 5.02 TeV with ALICE at LHC

Ravindra Singh Indian Institute of Technology Indore (IN) (for the ALICE collaboration) <u>ravindra.singh@cern.ch</u>

Measurement and Motivation:

- Two particle azimuthal angular correlations involving electrons from heavy-flavour hadron decays can be used for heavy-flavour jet studies.
- By changing the momentum scales of the heavy-flavour decay electron and associated particle, one can study the heavy-flavour jet structure and the interplay of soft and hard processes^[1].
- In pp collisions, heavy-flavour correlations can be used to study the production and fragmentation of heavy quarks.

ALICE Apparatus:

Inner tracking system (ITS) and Time Projection Chamber (TPC): |η| < 0.9.

Calorimeters

Di-jet calorimeter (DCal): $|\eta| < 0.7, 320^{\circ} < \varphi < 327^{\circ}; 0.22 < |\eta| < 0.7, 260^{\circ} < \varphi < 320^{\circ}$

Electromagnetic calorimeter (EMCal): $|η| < 0.7, 80^{\circ} < φ < 187^{\circ}$.

Using TPC and calorimeters, electrons are identified in this analysis in the range $4 < p_{T} < 12 \text{ GeV/}c$.

Analysis procedure:

➤ Hadron contamination is removed in the electron sample by using *E/p* distribution.

•
$$e_{lnc}$$
 = (Electron Cand. - Hadrons) $|_{0.8 < E/p < 1.2}$

- Non-HF decay electrons extracted from invariant mass distribution of like and unlike-sign electron pairs. These electrons are mainly constituted by Dalitz decays of neutral mesons and photon conversion in the detector material.

 - $\bullet \qquad e_{\text{Non-HF}} = (1/\epsilon_{\text{NHFE}}) e_{\text{Reco-NonHF}}$

Where,
$$\boldsymbol{\mathcal{C}}_{\mathsf{NHFE}} o \mathsf{Tagging}$$
 efficiency

- Heavy-flavour decay electrons obtained by subtracting the non-heavy-flavour electrons from inclusive electrons
 - = $e_{HF} = e_{Inc} e_{Non-HF}$

Analysis procedure:

- ightharpoonup Obtain ($\Delta \varphi$, $\Delta \eta$) distribution between inclusive electrons and charged particles.
- For charged particles, no PID performed.
- Detector effects are corrected using mixed event technique.

- ightharpoonup Hadron contamination is removed by subtracting $\Delta \phi_{\text{di-hadron}}$ from $\Delta \phi_{\text{IncE}}$ distribution using E/p distribution.
- $ightarrow \Delta \varphi$ distribution of non-HF decay electrons extracted from like and unlike-sign electron pairs $\Delta \varphi$ distribution.

$$\Delta \varphi_{ ext{NonHFE}} = (1/\epsilon_{ ext{NHFE}})\Delta \varphi_{ ext{Reco-NonHFE}}$$
Where, $\epsilon_{ ext{NHFE}} o ext{Tagging efficiency}$
 $\Delta \phi_{ ext{Reco-NonHFE}} = \Delta \phi_{ ext{LILS}} - \Delta \phi_{ ext{LS}}$

Correlations between c,b→ e and charged particles:

$$\Delta \varphi_{\text{HFE}} = \Delta \varphi_{\text{IncE}} - \Delta \varphi_{\text{NonHFE}}$$

➤ Tracking efficiency and purity correction for secondary particles are implemented → normalized with the number of triggered heavy-flavour decay electrons.

$\Delta \varphi$ distribution of heavy-flavour electrons and charged particles:

$$f(\Delta\varphi) = b + \frac{\mathbf{Y_{NS}} \times \beta_{NS}}{2\alpha_{NS}\Gamma(1/\beta_{NS})} \times \mathbf{e}^{-(\frac{\Delta\varphi}{\alpha_{NS}})^{\beta_{NS}}} + \frac{\mathbf{Y_{AS}} \times \beta_{AS}}{2\alpha_{AS}\Gamma(1/\beta_{AS})} \times \mathbf{e}^{-(\frac{\Delta\varphi-\pi}{\alpha_{AS}})^{\beta_{AS}}}$$

b = Baseline (Pedestal)

 α = Related to width of peaks

Y = Yields

 β = Related to shape of peaks

Near and away-side sigma (σ):

Near and away-side sigma is extracted from the fitting parameters (α,β) with the relation^[2]:

$$\sigma = \sqrt{\alpha \Gamma(1/\beta) \Gamma(3/\beta)}$$

The near and away-side sigma are compared with PYTHIA8 \rightarrow consistent within 1-2 σ

Near and away-side yields:

- Near and away-side yields are measured by the bin counting method in the region of $|\Delta \phi| < 3\sigma$.
- Near-side yield measured by the ALICE is in good agreement with PYTHIA8.
- Away-side yield obtained by ALICE is consistent with PYTHIA8 for 4-7 GeV/c and overestimated by ~ 20% for 1-4 GeV/c.

Summary and conclusion:

- $\Delta \phi$ distribution, near-and away-side observables are obtained for heavy-flavour decay electrons and charged particle correlation.
- PYTHIA8 predictions of fragmentation processes in heavy-flavours are in good agreement with data.

Outlook:

 Φ Δφ distribution of p–Pb and central Pb–Pb collisions:

Enhancement observed at near-side peak in Pb–Pb compared to p–Pb, although the large uncertainties in Pb–Pb analysis do not allow for a firm conclusion.

New measurements from p-Pb and Pb-Pb will improve the precision of the results.