Strange particle production in p-Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV with ALICE at the LHC

Meenakshi Sharma
for the ALICE Collaboration
Quark Matter 2022, Krakow

Contact:
Meenakshi Sharma
meenakshi.sharma@cern.ch
University of Jammu, India
The yield ratio of strange to non-strange hadrons in the four systems
- Smooth evolution with charged-particle multiplicity across pp, p-Pb and Pb-Pb collisions
- Baryon over Meson ratio shows no significant change as a function of multiplicity
- Strangeness enhancement is not driven by mass nor it is a baryon/meson effect

Across the three systems Λ/K^0_S evolves with multiplicity in a qualitatively similar way:
- Depletion at low p_T, enhancement at intermediate p_T

----> Hint of collective behaviour in small systems
Recent Results in ALICE

- p_T spectra hardening is observed moving from low multiplicity to high multiplicity region.
- Yields of strange particles measured in different systems as a function of multiplicity lie on the same trend.
- Both dN/dy and $<p_T>$ increase as a function of multiplicity.
Recent Results in ALICE

- The Λ/π and K_S^0/π ratios increase with multiplicity and then reach a saturation in central Pb-Pb collisions (consistent with the statistical hadronization model).

- Λ/K_S^0 ratio as a function of p_T shows peak at intermediate \(p_T\) (Baryon enhancement)
 - interplay of radial flow and parton recombination at intermediate p_T

- Λ/K_S^0 ratio shows no significant change as a function of multiplicity
 - Strangeness enhancement is not driven by mass nor it is a baryon/meson effect

- Mass ordering of R_{pPb} at intermediate p_T, which is qualitatively similar to that in Pb–Pb collisions (Mass ordering or Baryon meson splitting?)
Summary

- p_T integrated yield and $<p_T>$ increase with multiplicity.
- Ratios of neutral strange hadrons to pions increase with multiplicity and then saturate (Strangeness enhancement). The ratios are found to be independent of the collision system and center-of-mass energy.
- Λ/K^0_S: Baryon enhancement at intermediate p_T.
- Λ/K^0_S as a function of multiplicity shows no significant evolution.
- R_{pPb}: peak at intermediate p_T visible for Λ.

Thank You