K** production in Pb-Pb collisions at LHC

Prottay Das (for the ALICE collaboration)
National Institute of Science Education and Research
HBNI, Jatni India

Outline:

- ✓ Motivation
- Signal extraction
- ✓ Results
- ✓ Summary

Motivation

✔ Resonances: Short lived particles which decay via strong interaction

Lifetime (fm/c)

$$\rho^{0}(1.3) < K^{*}(4.16) < \Sigma^{*}(5.0) < \Lambda^{*}(12.6) < \phi(46.2)$$

✓ Hadronic phase: Phase between chemical and kinetic freeze-out

Resonances are a good tool to probe rescattering vs regeneration effect in the hadronic phase

The measurement of the K**resonance production is presented

Properties	of	K*±
-------------------	----	-----

Mass (GeV/c²)	0.891
Width (GeV/c²)	0.050
Spin	1
Quark content	u s
Decay mode	$K_s^0\pi$
B.R (%)	33.3

Signal extraction

Dataset

Collision system	Pb-Pb
√s _{NN}	5.02 TeV

Events 120 M

✓ Invariant mass method:

$$M_{K_{\circ}^{0}\pi} = \sqrt{((E_{1} + E_{2})^{2} - (\vec{p}_{1} + \vec{p}_{2})^{2})}$$

Before bkg subtraction

After bkg subtraction

- Combinatorial bkg: Mixed Event
- ✓ Fit function:
- Signal: Breit-wigner
- Residual background: Exponential+quadratic

Results

Normalized yield

Mean transverse momentum

- \checkmark Inverse slope of p_{T} spectra increases with increasing multiplicity
- ✓ dN/dy, $<p_{\tau}>$ of $K^{*\pm}$ is consistent with K^{*0} within uncertainties
- \checkmark K*± yield at 5.02 TeV and K*0 yield at 2.76 TeV are similar at similar $dN_{ch}/d\eta$
- \checkmark < p_{T} > increases with multiplicity and mass of hadrons
- \checkmark Mass ordering in $< p_{\tau} >$ is obeyed in central collisions but breaks down in peripheral collisions

Results

- K*/K yield yield ratio decreases with increasing system size, in contrast to φ/K yield ratio which remains constant
- ✔ Rescattering dominates over regeneration
- Models with rescaterring effect (MUSIC+SMASH and HRG-PCE) qualitatively describe the data

Summary

- ✓ First measurement of K*± is presented in Pb-Pb collisions at 5.02 TeV
- ✓ dN/dy of K*± depends on event multiplicity
- ✓ In central collisions $< p_{T} >$ follows mass ordering
- ✓ Particle ratios study shows evidence of rescattering effect similarly like K*⁰