Search for higher mass resonances via KK decay channel in pp collisions

Normal meson

with ALICE at the LHC

Dukhishyam Mallick (for the ALICE Collaboration)National Institute of Science Education and Research,
HBNI, Jatni, INDIA

Pentaguark

Hybrid mesor

Motivation:

Lattice QCD predicts the possible existence of glueballs [1],[2].

[1] PRL101, 112003 (2008)

[2].P.A. Zyla et al. (Particle Data Group)

Q Candiates:

- -- Mass range : 1550-1750 MeV/c²
- -- Total angular momentum, charge and parity : J^{PC} (0⁺⁺)

K⁰ c-K⁰ resonance in ep collisions Combinations/15 MeV f₂(1270)/a⁰(1320) $f_0(1710)$ 800 1.5 1.9 1.1 $M(K_s^0K_s^0)$ (GeV)

In the present study we look for resonances decaying in K⁰_s-K⁰_s and K⁺K⁻ pairs via invariant mass reconstruction in pp collisions at LHC energies

can we see these states in pp collisions with the ALICE detector ??

K_{s}^{0} selection and reconstruction of resonances:

Data set

Collision system: pp

Center-of-mass energy :13 TeV Events analyzed : 1.52 x 10⁹

Invariant mass method:

$$M_R = \sqrt{(E_1 + E_2)^2 - (\vec{p_1} + \vec{p_2})^2}$$

Relativistic Breit-Wigner function (rBW) (for signal) :

$$\frac{M_R \Gamma_0 M_0}{(M_R^2 - M_0^2)^2 + M_0^2 \Gamma_0^2}$$

For residual background function (Res.Bkg):

$$A(M_R - 2m_0)^B exp(-C(M_R - 2m_0))$$

Fit funtion used for this study[1]:

For K_s^0 - K_s^0 pair : Coherent Breit-Weigner function + Res.Bkg : $c1*|5*rBW\{f_s(1270) - 3*rBW\{a_s(1320)\} + 2*rBW\{f_s(1525)\}|^2$

+
$$c3*|rBW{f_0(1710)}^2|^2$$
,

 M_R = mass of reconstructed pair

$$M_0 = PDG$$
 mass of resonance[2],

 m_0 = PDG mass of decay daughter of resonance

$$\Gamma_0 = PDG$$
 width of resonance [2],

c1, c3, A, B, C are free fit parameters

For K⁺K⁻ pair : Non-coherent Breit-Weigner function + Res.Bkg

K⁰₂-K⁰₂ and K⁺K⁻ invariant mass distributions

Signal after combinatorial background subtraction

- \triangleleft A prominent $f_2(1525)$ signal is observed in both the decay channels.

Summary:

- First look to the invariant mass distributions of K⁰_S-K⁰_S and K⁺K⁻ pairs in pp collisions at 13 TeV.
- Higher mass resonance states are observed and a prominent signal peak is seen for f₂(1525) in both of the decay channels.

Outlook:

- Extract mass, width and p_T distributions of the observed high mass resonances.
- High statistics collected in Run 3 and Run 4 is mandatory for precise measurements.