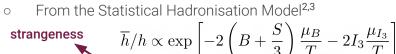
Study of Antimatter-Over-Matter Ratios for the Measurement of the Baryon Chemical Potential at the LHC with ALICE

Mario Ciacco, on behalf of the ALICE Collaboration Politecnico di Torino and INFN

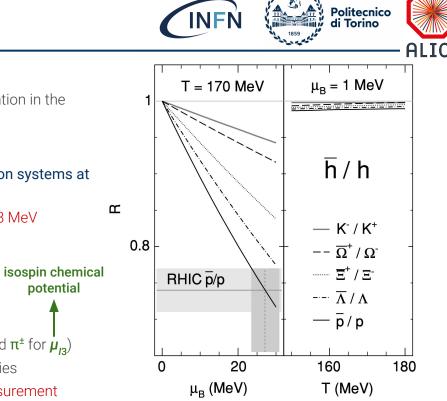

The Baryon Chemical Potential

Chemical potential: internal energy variation (dU) due to variation in the 0 particle number (dN)(AU)

$$u = \left(\frac{\mathrm{d}U}{\mathrm{d}N}\right)_{S,V}$$

- baryon number $B \rightarrow \mu_B \rightarrow$ antimatter-matter balance in hadron systems at thermal and chemical equilibrium
- In $\sqrt{s_{NN}}$ = 2.76 TeV Pb-Pb collisions at the LHC¹, μ_{p} = 0.7 ± 3.8 MeV 0

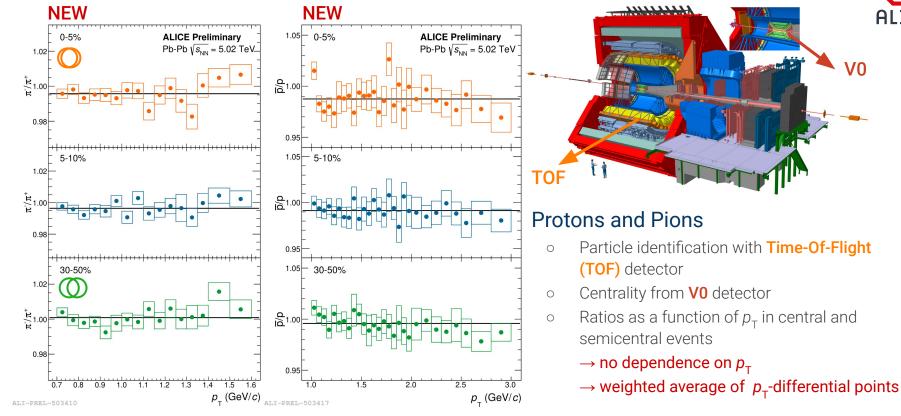
Antiparticle-to-particle Ratios


strangeness

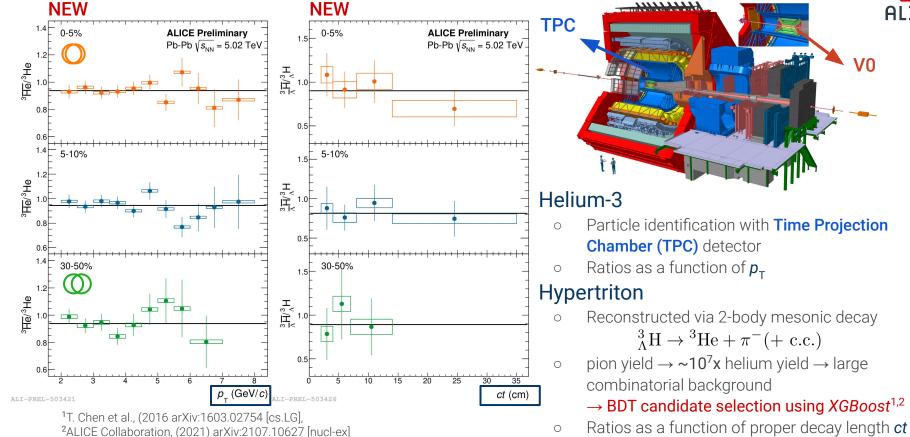
$$\exp\left[-2\left(B+\frac{S}{3}\right)\frac{\mu_B}{T}-2\right]$$

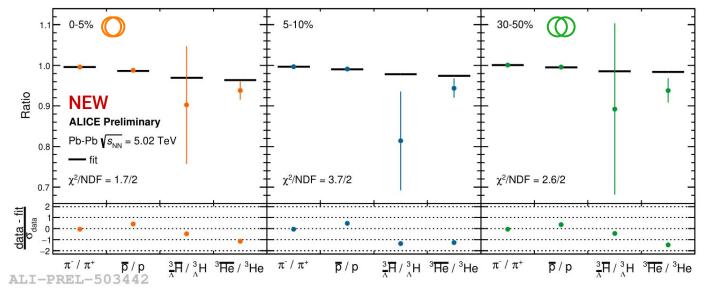
Large **B** + S/3 \rightarrow high sensitivity to $\mu_B \rightarrow$ (anti)p, ³He, ³H (and π^{\pm} for μ_B) Ο

- Small dependence on temperature $T \rightarrow$ fixed from other studies
- Ratios \rightarrow reduce systematic uncertainties \rightarrow precise $\mu_{\rm B}$ measurement


¹A. Andronic et al., Nature 561, 321-330 (2018), ²J. Cleymans et al., Phys. Rev. C 74, 034903 (2006), ³J. Cleymans and H. Satz., Z. Phys. C 57, 135–147 (1993)

potential


Analysis of Antiparticle-to-particle Ratios: Pions and Protons


Analysis of Antiparticle-to-particle Ratios: Helium and Hypertriton

Measurement of μ_{B} : Statistical Hadronisation Model Fit

Fit to Ratios

- Statistical Hadronisation Model $\rightarrow \overline{h}/h \propto \exp\left[-2\left(B+\frac{S}{3}\right)\frac{\mu_B}{T}-2I_3\frac{\mu_{I_3}}{T}\right]$ 0 $\rightarrow \mu_{B}$ and μ_{B} as fit parameters
- π^+ ³He [∧]³H D B+S/3 3 8/9 0 1/21/20

13

- Fit results mostly driven by protons and pions 0
- Strangeness neutrality $\rightarrow \mu_s \approx \mu_B/3 \rightarrow \text{scaling of ratios with } B + S/3 \rightarrow \text{verified}$ 0

Results

- precise evaluation of antiparticle-over-particle ratios
- agreement with previous studies (in 2018: $\mu_B = 0.7 \pm 3.8$ MeV)
- ~6x improvement in precision from previous studies → most precise measurement in Pb-Pb at TeV scale
- **no significant dependence on centrality** from central to semicentral collisions

Outlook

- Further test the statistical model description with additional species
 - $\Omega \rightarrow B + S/3 = I_3 = 0$ → expected ratio = 1
 - ${}^{3}\text{H} \rightarrow B + S/3 = 3$, $I_{3} = -1/2$ → negative-isospin ${}^{3}\text{He counterpart}$
- $\mu_{_B}$ (MeV) **ALICE Preliminary** Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ • Uncorr. uncert. Corr. uncert. SHM fit, *Nature* **561**, 321-330 (2018) 50 100 150 200 250 300 350 n ALI-PREL-503455

NEW

400

 $\langle N \rangle$

450

part

