The Baryon Chemical Potential

- **Chemical potential**: internal energy variation (dU) due to variation in the particle number (dN)
 \[\mu = \left(\frac{dU}{dN} \right)_{S,V} \]
- **Baryon number**: $B \rightarrow \mu_B$ → antimatter-matter balance in hadron systems at thermal and chemical equilibrium
- In $\sqrt{s_{NN}} = 2.76 \text{ TeV Pb–Pb}$ collisions at the LHC\(^1\), $\mu_B = 0.7 \pm 3.8$ MeV

Antiparticle-to-particle Ratios

- **From the Statistical Hadronisation Model\(^2\)\(^3\)**

- **Strangeness**: $B + S/3 \rightarrow$ high sensitivity to $\mu_B \rightarrow (\text{anti})p, \ ^3\text{He}, \ ^3\text{H}$ (and π^\pm for μ_{I_3})
- **Small dependence on temperature T → fixed from other studies**
- **Ratios → reduce systematic uncertainties → precise μ_B measurement**

Analysis of Antiparticle-to-particle Ratios: Pions and Protons

Protons and Pions

- Particle identification with Time-Of-Flight (TOF) detector
- Centrality from V0 detector
- Ratios as a function of p_T in central and semicentral events
 - no dependence on p_T
 - weighted average of p_T-differential points
Analysis of Antiparticle-to-particle Ratios: Helium and Hypertriton

NEW

Helium-3
- Particle identification with Time Projection Chamber (TPC) detector
- Ratios as a function of p_T

Hypertriton
- Reconstructed via 2-body mesonic decay $\Lambda^3 H \rightarrow \Lambda^3 He + \pi^-(+ \text{ c.c.})$
- Pion yield $\rightarrow \sim 10^7 \times$ helium yield \rightarrow large combinatorial background
- BDT candidate selection using XGBoost
- Ratios as a function of proper decay length c_t
Measurement of μ_B: Statistical Hadronisation Model Fit

- Statistical Hadronisation Model $\rightarrow \bar{h}/h \propto \exp \left[-2 \left(B + \frac{S}{3} \right) \frac{\mu_B}{T} - 2I_3 \frac{\mu_{I_3}}{T} \right]$
 - μ_B and μ_{I_3} as fit parameters
- Fit results mostly driven by protons and pions
- Strangeness neutrality $\rightarrow \mu_S \approx \frac{\mu_B}{3}$ \rightarrow scaling of ratios with $B + S/3$ \rightarrow verified

Fit to Ratios

<table>
<thead>
<tr>
<th>π^+</th>
<th>p</th>
<th>3He</th>
<th>3H</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
<td>8/9</td>
</tr>
<tr>
<td>I_3</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
</tr>
</tbody>
</table>

Mario Ciacco
Measurement of μ_B: Results and Outlook

Results

○ precise evaluation of antiparticle-over-particle ratios
○ agreement with previous studies (in 2018: $\mu_B = 0.7 \pm 3.8$ MeV)
○ $\sim6x$ improvement in precision from previous studies \rightarrow most precise measurement in Pb–Pb at TeV scale
○ no significant dependence on centrality from central to semicentral collisions

Outlook

○ Further test the statistical model description with additional species
 ○ $\Omega \rightarrow B + S/3 = I_3 = 0$
 \rightarrow expected ratio = 1
 ○ $^3\text{H} \rightarrow B + S/3 = 3, I_3 = -1/2$
 \rightarrow negative-isospin ^3He counterpart