

Significance estimation for virtual photon polarization measurement with dimuons at ALICE

Kento Kimura for the ALICE collaboration

Hiroshima University

4 – 10 Apr 2022 Quark Matter 2022

<u>Ultra-intense magnetic field in heavy-ion collisions</u>

Outline

- Virtual photon polarization measurement
- Estimation of polarization significance
 - ✓ Numerical QED calculation of polarization
 - ✓ Yield estimation of signals $(\gamma^* \rightarrow \mu^+ \mu^-)$ and combinatorial background
- The ultra-intense magnetic field is possibly detectable at Run 3

Maximum intensity

- $\sim 10^{15}$ T @LHC in Pb-Pb at centrality 40 60%
 - Non-linear QED effect ex. vacuum birefringence, photon splitting
 - Chiral magnetic effect
- Lifetime ~ 0.1 fm/c
 - Possibly longer lifetime of B_p by QGP rotation
 - Vorticity Observed by STAR

- ${\it B}_{\rm s}$: magnetic field generated by spectator
- ${\it B}_{\rm p}$: magnetic field generated by participant

Fig. 1 Illustration of generated ultra-intense magnetic field

How to detect ultra-intense magnetic field

Virtual photon polarization

- Effect due to ultra-intense magnetic field
- Anisotropic decay plane of $\gamma^* \rightarrow \mu^+ \mu^-$

$[\langle N_{\perp} \rangle \neq \langle N_{\parallel} \rangle] \equiv Polarization$

Polarization measurement with dimuon

Direct γ/γ^* from initial stage at high p_{T}

Fig. 4 Contribution from different source in Direct photon[2] and data from Pb-Pb at $\sqrt{s_{NN}}$ =2.76 TeV [3]

- rejection of heavy quark decay muons
 - Muon Forward Tracker (MFT)

Numerical calculation of virtual photon polarization **Calculation results Calculation formulae** Polarization $P_{\text{cal}} \equiv \frac{R_{\perp} - R_{\parallel}}{R_{\perp} + R_{\parallel}}$ R_{\perp} : perpendicular to B Dimuon production rate $R_{\mu^{+}\mu^{-}} = \frac{\alpha^{2}}{2\pi^{4}} \{ \left(-g^{\alpha\beta}q^{2} + q^{\alpha}q^{\beta} \right) C \} D_{\mu\alpha}(q, eB) D_{\nu\beta}^{*}(q, eB) L^{\mu\nu}(p_{1}, p_{2}) \}$ - Larger P_{cal} in higher $p_{\mu\mu}$ Photon source photon propagator Lepton tensor Vacuum polarization tensor in propagator [4] - $P_{cal} = 0.12 \pm 0.03$ at $p_{T} \approx 3.5 \text{ GeV}/c$ - Full landau level sum Expected larger P_{cal} for $p_T > 4 \text{ GeV}/c$ from factor $N_i = -\frac{\alpha}{4\pi} \sum_{i=1}^{\infty} C_n \sum_{i=1}^{\infty} \Omega_{i,l}^n(r,\eta,\mu) - \frac{\alpha}{4\pi} \int_{-1}^{1} dv \int_0^\infty dz \left[(\overline{N}_i(z,v)e^{i\psi(z,v)\eta} - \frac{1-v^2}{z})e^{-i\frac{z}{\mu}} \right]$ $M_{\mu\mu} = 300 \text{ MeV}/c$ n.I: landau level P_{cal} Extrapolation to infinity P_{cal} 1st \blacktriangleright Replaced to n_{max}^{-1} and $n_{\text{max}}^{-1/2}$ 2nd n_{max} : upper limit of landau level n 0.05 $p_{\rm T} \cong 3.5 \; {\rm GeV}/c$ \succ Fit with 1st - 4th polynomial Systematic error $n_{\rm max}$ 20 $p_{\mu\mu}(\text{GeV/c})$ Fig. 6 Extrapolation at $p_{\mu\mu} = 35 \text{ GeV}/c$ Extrapolation variability with $n_{\rm max}^{-1}$ Fig. 7 Calculated polarization at $M_{\mu\mu} = 300 \text{ MeV}/c$

Yield estimation of signal and background $\mu^+\mu^-$

Assumption: no detector effect, purity and tracking efficiency 100%

Number of signals N_S

- $N_{\gamma^* \to \mu\mu}$ in pp 10⁸ events with PYTHIA (tune: monash 2013) [5]
- η acceptance: -4.0 < η < -2.5
- Photon from parton scattering decay dimuons
- Scaling to stat. at Run 2 or 3 in Pb-Pb with centrality 40-60%

Scaling factor = $N_{coll} \times \frac{\text{Run 2 or 3 stat.}}{\text{PYTHIA minimum bias events}} \times \frac{20[\%]}{100[\%]}$

Number of combinatorial background $N_{\rm B}$

- Selected centrality 40 -60 % in Pb-Pb 10⁶ events with PYTHIA Angantyr [5]
- η acceptance: -4.0 < η < -2.5
- Selected decay muons (orange range in Fig.8)
- Scaling to stat. at Run 2 or 3 in Pb-Pb with centrality 40-60%

Scaling factor = $\frac{\text{Run 2 or 3 stat.}}{\text{PYTHIA minimum bias events}}$

			N _S	N _B
	Run 2 (2015-2018)	All dimuons	$\sim 10^{5}$	$\sim 10^{10}$
		$p_{\mathrm{T}} > 4~\mathrm{GeV}/c$	$\sim \! 10^4$	~10 ⁶
	Run 3 (2022-2025)	All dimuons	~10 ⁶	$\sim 10^{11}$
		$p_{\mathrm{T}} > 4~\mathrm{GeV}/c$	$\sim 10^{5}$	$\sim 10^{7}$
			N _s /events	N _B /events
$\begin{array}{l} \underline{\mbox{Minimum Bias Events}}\\ \mbox{Run 2} & \sim 10^9\\ \mbox{Run 3} & \sim 10^{10} \end{array}$		All dimuons	$\sim 10^{-4}$	~10
		$p_{\rm T} > 4~{ m GeV}/c$	$\sim 10^{-5}$	$\sim 10^{-3}$

Estimation of polarization significance

Assumption: no detector effect, purity and tracking efficiency 100%

