Reconstruction of beauty jets in proton-proton collisions at

$$\sqrt{s}=13$$
 TeV with ALICE

Katharina Demmich

Quark Matter 2022 8 April 2022

Motivation and Introduction

- b-jet cross section is important ingredient for testing predictions by quantum chromodynamics for production and fragmentation of heavy flavours
- heavy flavours are good probes for investigating properties of the quark-gluon plasma
- ALICE can measure the b-jet production down to low jet momentum due to excellent tracking capabilities

The analysis in short:

- ALICE data for pp collisions at 13 TeV with a luminosity of about $11\,\mathrm{nb}^{-1}$ are analysed
- b-jet selection ("tagging") based on impact parameter of tracks within jets
- performance estimation via template fits to jet probability distributions in data

[Figure from M. Strickland, arXiv:1410.5786]

b-Jet Selection

- B hadrons exhibit long lifetimes ($\sim 500 \, \mu m$)
- secondary vertex of B hadron decays well separated from primary collision vertex (PV)
- ightarrow b jets tend to contain tracks with large transverse impact parameter significance $\mathit{Sd}_{\mathit{xy}}$

In this analysis:

- b jets defined as jets with a b quark within the jet cone
- tracks within jets are ordered such that their Sd_{xy} values are decreasing
- threshold selection based on Sd_{xy} of tracks with the largest and second largest Sd_{xy} within a jet

Definition of Sd_{xy}

$$Sd_{xy} = |\vec{d}_0| \operatorname{sign}(\vec{d}_0 \cdot \vec{e}_{\mathsf{Jet}}) / \sigma(\vec{d}_0)$$

- ullet $ec{d}_0 =$ transverse impact parameter in xy-plane
- $\bullet \ \vec{e}_{\mathsf{Jet}} = \mathsf{vector} \ \mathsf{of} \ \mathsf{the} \ \mathsf{jet} \ \mathsf{axis} \\$
- $\sigma(\vec{d}_0) = \text{impact parameter resolution}$

Performance Correction of b-Jet Spectrum

- jet probability JP: measure probability that jet originates from PV \rightarrow -ln(JP) distributions have wider tails than light-flavour or c jets
- simulated -In(JP) distributions for different jet flavours using PYTHIA 8+GEANT 3
- 2. performed template fits to the data before and after the b-jet selection for every bin of the jet momentum $p_{\text{T.ch jet}}$

Definition of
$$-\ln(JP)$$

$$JP = \prod \times \sum_{k=0}^{N_{Tracks}-1} \frac{(-\ln \prod)^k}{k!}, \quad \prod = \prod_{i=1}^{N_{Tracks}} P_{tr,i}(Sd_{xy,i})$$
with $P_{tr}(Sd_{xy,i}) = \int_{-\infty}^{-|Sd_{xy,i}|} R(I) \, dI / \int_{-\infty}^{0} R(I) \, dI$

- only tracks with $Sd_{xy} > 0$ are accepted for $-\ln(JP)$ calculation
- resolution function R(I) = negative side of Sd_{xy} distribution for inclusive jets

Performance Correction of b-Jet Spectrum

3. calculated efficiency ϵ_b and purity p_b via b-jet fractions obtained from fit results:

$$\epsilon_b = C_b rac{f_b^{ ext{tag}}}{f_b^{ ext{untag}}} rac{N^{ ext{tag}}}{N^{ ext{untag}}} \quad ext{and} \quad rac{p_b}{f_b^{ ext{tag}}}$$

 $f_b^{\rm tag}, f_b^{\rm tag}, f_b^{\rm tag}$ and $N^{\rm tag}, N^{\rm untag} = {\rm b\text{-jet}}$ fractions and number of events in tagged and untagged sample $C_h = {\rm fraction}$ of ${\rm b\text{-iets}}$ with well defined $-{\rm ln}({\rm JP})$

- \rightarrow tagging purity is about 40 %, efficiency about 50 %
- 4. obtained fully corrected spectrum via

$$\frac{\mathsf{d}\sigma_{\mathsf{ch,\;b\;jet}}}{\mathsf{d}\rho_{\mathsf{T,ch\;jet}}} = \frac{\sigma_{\mathsf{V0}}}{\mathit{N}_{\mathsf{ev}}} \cdot \mathsf{Unfolded}\bigg(\frac{\mathsf{d}\mathit{N}^{\mathsf{raw}}_{\mathsf{ch,\;b-jet}}}{\mathsf{d}\mathit{p}_{\mathsf{T,ch\;jet}}} \, \frac{\mathit{pb}}{\epsilon_{\mathsf{b}}}\bigg)$$

 $\sigma_{\rm V0}=$ reference cross section, $N_{\rm ev}=$ number of events, $\frac{dN_{\rm ch,\,b|at}^{\rm mos}}{dp_{\rm T,ch\,int}}=$ raw b-tagged spectrum

Results

- b-jet production measured in pp collisions at \sqrt{s} =13 TeV larger by about a factor of 2-6 from low to large $p_{\text{T,ch}}$ iet with respect to measurements at 5.02 TeV
- fraction of b jets over inclusive jets compatible for 13 TeV and 5.02 TeV data