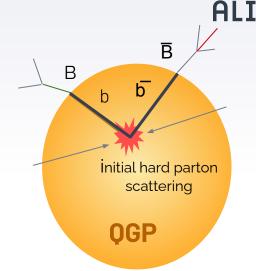


Beauty measurement prospects with ALICE 3

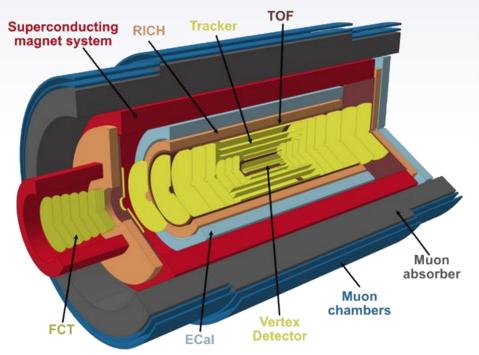

Antonio Palasciano⁽¹⁾, Deepa Thomas⁽²⁾ on behalf of the Alice Collaboration

⁽¹⁾Università degli Studi di Bari "Aldo Moro", ⁽²⁾The University of Texas at Austin

Poster Session Quark Matter 2022, Krakow

Beauty production: physics motivation

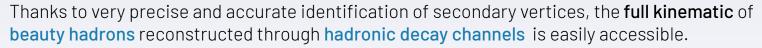
- **pp collisions**: crucial for testing **perturbative QCD** (pQCD) calculations.
- p-Pb collisions: isolate impact of cold-nuclear matter effects.
- Heavy-ion collisions: heavy quarks are probes of the QGP, investigate mass dependence of energy loss.
 - → Beauty quarks are not expected to fully thermalize:
 - qualitative test for heavy quark transport,
 - > study **hadronization** away from equilibrium.


- In Runs 3 and 4 of the LHC, ALICE will perform measurements of open beauty hadrons^[1]
 - → expected precision to be limited, not enough to constrain *transport coefficients*.

ALICE 3 would allow high-accuracy measurements of production of beauty hadrons down to $p_T = 0$ to study their participation in the collective dynamics of the system.

ALICE 3

ALICE 3 is a next-generation multipurpose detector at the LHC, featuring unprecedented tracking and vertexing capabilities.

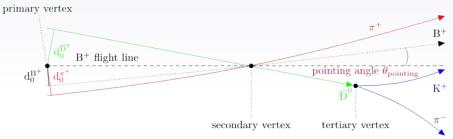


- Ultra-lightweight silicon tracker
- Extensive Particle Identification over wide momentum range
- Kinematic range down to very low $p_{_{
 m T}}$
- Large acceptance
 - \rightarrow Barrel detectors + end caps $\Delta \eta = 8$

Detectors for beauty hadronic decays analysis:

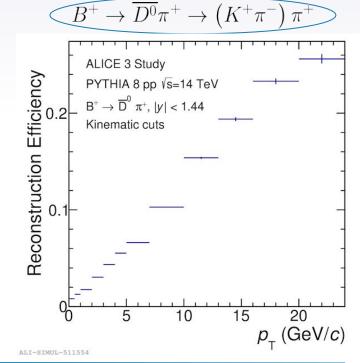
- Inner and outer tracker based on MAPS
- TOF + RICH for PID

Reconstruction of beauty channels



The **ALICE 3** performance have been evaluated through the decays:

B decay topology and reconstruction strategy:

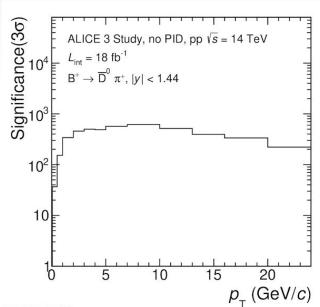


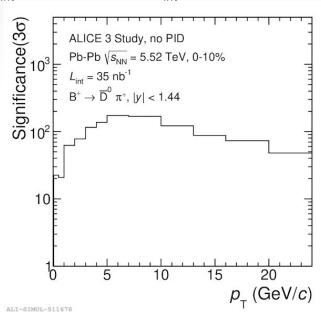
Topology: CPA, DecayLength, DCA, ...
PID: TOF and RICH

Adding a charged track and extrapolating B⁺ decay vertex

B⁺ candidate: definition and selection

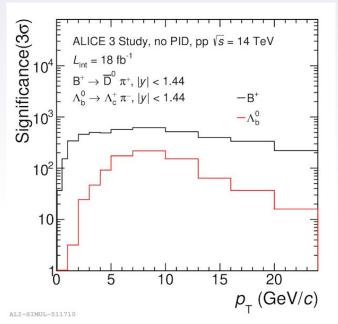
Topology: CPA, DecayLength, DCA,...
PID: TOF and RICH

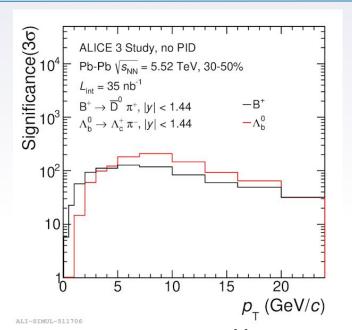



Estimation of significance

ALTCE

A projection of the significance for B^+ signal in $|\Delta y| < 1.44$ is computed using:


- Signal estimation: $S = \Delta p_{\rm T} \cdot \Delta y \cdot (A \times \epsilon) \cdot (d\sigma_{b\bar{b}}^{FONLL}/dp_{\rm T}) \cdot f(b \to B) \cdot BR$
- Background per event
- Expected integrated luminosity in Run 5 and 6: pp: L_{int} = 18 nb⁻¹, Pb-Pb: L_{int} = 35 nb⁻¹



The high luminosity and precise secondary vertex reconstruction allow beauty hadrons to be measured down to $p_T \sim 0$.

Performance for beauty baryons

The projections of the **ALICE 3** results look promising compared to Run 3 and $4^{[1]}$, providing excellent performance also in the **low-p**_{τ} region for both beauty baryons and mesons:

- \rightarrow insight into thermalisation and hadronization mechanisms (e.g. by looking at Λ_h /B yield ratios)
- \rightarrow in-medium *energy loss* and its *mass dependence* ($R_{\Lambda\Lambda}$);
- \rightarrow in-medium *transport* from \mathbf{v}_2 measurement.

Reference

[1] 2014 J. Phys. G: Nucl. Part. Phys. 41 087002