

Measurement of non–prompt $\Lambda_{\rm c}^+$ production in pp collisions at $\sqrt{s}=13$ TeV with ALICE

Daniel Battistini, on behalf of the ALICE collaboration Technische Universität München Quark Matter 2022 – Kraków, Poland April 4–10, 2022

Heavy Flavour hadrons and the factorisation approach

The production of heavy–flavour (HF) hadrons (i.e. containing charm or beauty) is typically described using the *factorisation approach*:

[1] <u>Phys. Rev. Lett. 128, 012001</u>
[2] Phys. Rev. D 100, 031102(R)

Daniel Battistini

Quark Matter 2022 - XXIXth International Conference on Ultra-relativistic Nucleus-Nucleus Collisions

ALI-DER-493847

Analysis strategy

The Λ_c^+ candidate sample is made of three classes:

- combinatorial background,
- prompt Λ_c^+ ,
- non-prompt $\Lambda_{\rm c}^+$.


To separate the three classes \rightarrow Machine Learning (ML) approach:

- exploit the different decay-vertex topologies,
- multi–class classification algorithm based on Boosted Decision Trees,
- training with examples obtained from: data (background), Monte Carlo (prompt and non–prompt).

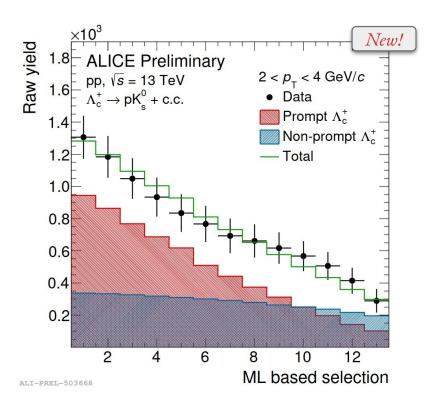
Output: 3 ML scores \rightarrow probabilities that the candidate belongs to each class.

Good separation! Select the candidates with:

- large non-prompt score,
- small bkg score.

Measurement of the non-prompt fraction

Different selections \rightarrow different proportions between prompt and non-prompt contributions.


To measure the non–prompt fraction^[1]:

- define many selections, for each:

 $Y_i = \varepsilon_i^{\mathbf{p}} N^{\mathbf{p}} + \varepsilon_i^{\mathbf{np}} N^{\mathbf{np}}$

Raw yields (from data), Efficiencies × acceptance (from MC), True yields (Unknown parameters).

- An overdetermined system of equation is defined.
- Solve numerically for $N^{\mathbf{p}}$ and $N^{\mathbf{np}}$.
- Measure the non–prompt fraction.

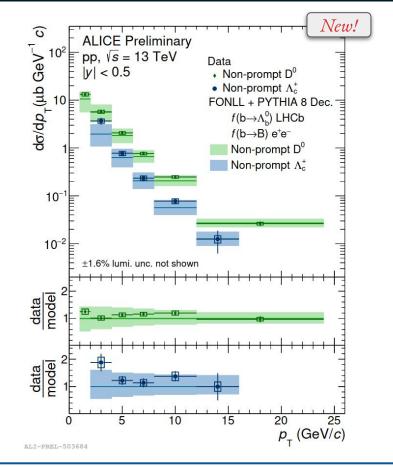
[1] <u>JHEP 05 (2021) 220</u>

Daniel Battistini

Quark Matter 2022 – XXIXth International Conference on Ultra-relativistic Nucleus-Nucleus Collisions

The non-prompt Λ_c^+ and non-prompt D⁰ cross section

The non-prompt Λ_c^+ cross section is measured in:


- $\Lambda_{c}^{+} \rightarrow pK_{s}^{0}$,
- $\Lambda_{\rm c}^+ \rightarrow {\rm pK}^- \pi^+$

decay channels.

Theoretical model: FONLL^[1] using:

- Λ_b^0 fragmentation fractions measured by LHCb^[2],
- folding with $H_b \rightarrow \Lambda_c^+ + X$ decay from PYTHIA8.

For both non–prompt D^0 mesons and Λ_c^+ baryons the data is compatible with the model!

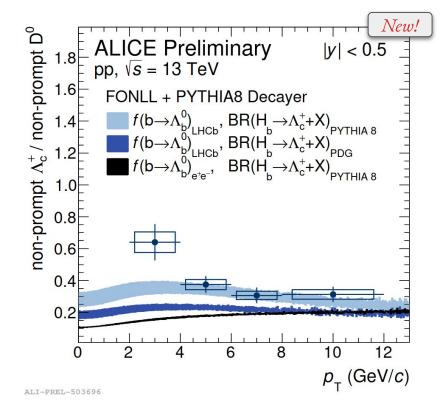
[1] <u>JHEP 03 (2001) 006</u> [2] <u>Phys. Rev. D 100, 031102(R)</u>

Daniel Battistini

Quark Matter 2022 – XXIXth International Conference on Ultra-relativistic Nucleus-Nucleus Collisions

The fragmentation of the beauty quark

The fragmentation of beauty is accessible via: non-prompt $~\Lambda_c^{+/}$ non-prompt D^0 ratio


FONLL tested using fragmentation fractions from

- LHCb^[1] (pp collisions),
- e^+e^- collisions,

and folded with the $\,H_b \to \Lambda_c^+ + X\,$ decay, using:

- PDG decay table (only measured decays),
- PYTHIA8 decay table (also unmeasured decays).

Enhanced beauty–baryon production w.r.t e⁺e⁻ collisions.

[1] Phys. Rev. D 100, 031102(R)

Daniel Battistini

Quark Matter 2022 – XXIXth International Conference on Ultra-relativistic Nucleus-Nucleus Collisions