

LMA MATER STUDIORUM Jniversità di Bologna

Marco Giacalone for the ALICE Collaboration

29th International conference on ultra-relativistic nucleus-nucleus collisions

April 4-10, 2022 Kraków, Poland

Physics Motivation

Measurements of

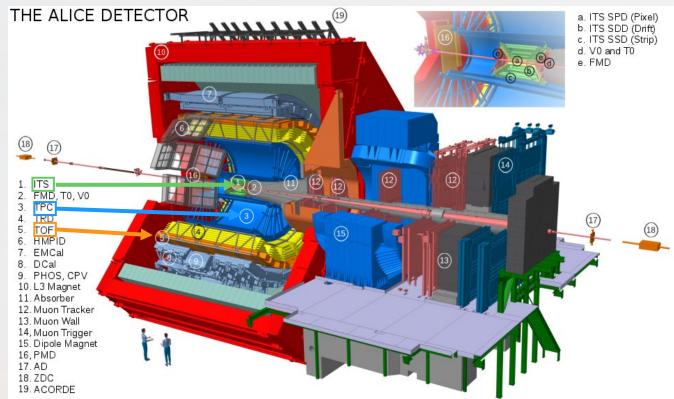
Heavy flavour hadron production measurements

Relative production rates of different charm hadrons

Lead us to

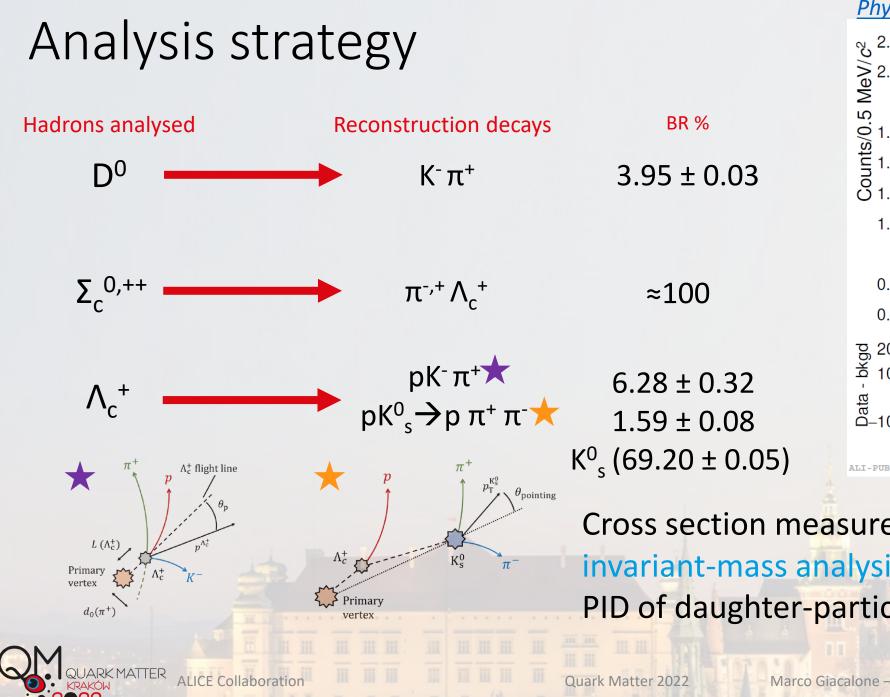
ALICE

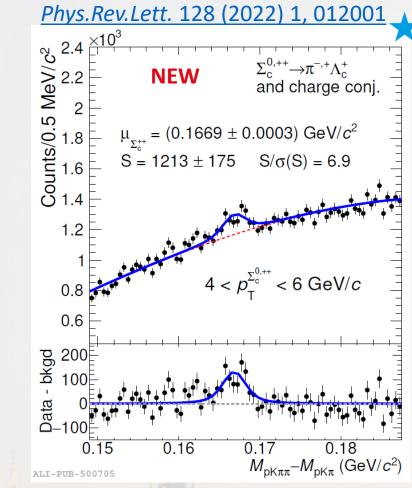
Test pQCD calculations


Study hadronization mechanisms of charm quarks

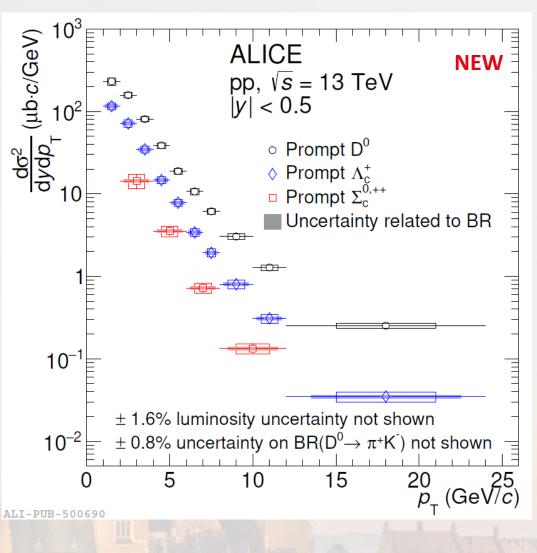
Detector setup

- D⁰, Λ_c^+ , and $\Sigma_c^{0,++}$ decays reconstructed in the central barrel $\rightarrow |\eta| < 0.9$
- Inner Tracking System (ITS) and Time Projection Chamber (TPC)
 → charged particles tracking
- TPC and Time Of Flight (TOF)
 → Particle Identification (PID)


ALICE Collaboration


• Selected events correspond to an integrated luminosity of 31.9 ± 0.5 nb⁻¹ of *pp* collisions at \sqrt{s} = 13 TeV <u>Phys.Rev.Lett.</u> 128 (2022) 1, 012001

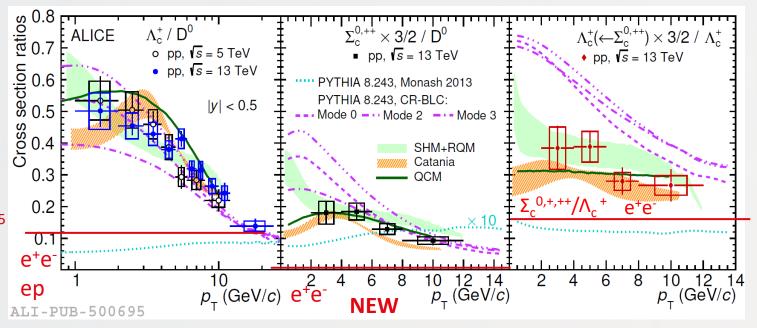
Quark Matter 2022



Cross section measurements based on invariant-mass analysis → selection based on PID of daughter-particles and decay topology

Cross section measurement

- D⁰ candidates formed by combining pair of tracks with $|\eta| < 0.9$ and $p_T > 0.3$ GeV/*c* which are selected with PID techniques
- Λ_c⁺ from pKπ decay reconstructed using a Bayesian probabilistic PID approach. Λ_c⁺ from pK⁰_s exploits machine-learning with Boosted Decision Trees algorithm
- $\Sigma_c^{0,++}$ production is reconstructed in the two Λ_c^{+} decay channels
 - Both Λ_c^+ and $\Sigma_c^{0,++}$ are averaged for the results using the studied decay channels
- Σ_c^{0,++} production is the first measurement in hadronic collisions



Charm hadron ratios and comparison with models

- Λ_c^+/D^0 decreasing with $p_T \rightarrow$ larger than $e^+e^$ and ep at different energies (≈ 0.17) *
- Σ_c^{0,++}/D⁰ halves from lowest to highest p_T interval → larger results than Belle e⁺e⁻ measurements (≈ 0.02) *
- *Phys. Rev. D 97 no. 7, (2018) 072005 • $\Lambda_c^+ \leftarrow \Sigma_c^{0,+,++}/\Lambda_c^+ \longrightarrow p_T$ integrated measurement is 0.38 ± 0.06(stat) ± 0.06(syst)

- PYTHIA8 Monash 2013 tune, employing Color Reconnection (CR) at leading order, underestimates ALICE results → reproduces results from e⁺e⁻ data
- PYTHIA8 CR Beyond Leading Colour (CR-BLC) model, Statistical Hadronization Model combined with prediction of the Relativistic Quark Model (SHM+RQM), Quark (re-)Combination Model (QCM) and Catania model, which uses a quark coalescence plus fragmentation approach, describe the Λ_c⁺ to D⁰ ratio

*P. Skands et al., arXiv:1404.5630 *Christiansen and Skands, JHEP 08 (2015) 003 *He and Rapp, Phys. Lett. B 795 (2019) 117–121 *Song et al, Eur. Phys. J. C 78 no. 4, (2018) 344 *V. Minissale et al, arXiv:2012.12001 Thank you

