Extending the ALICE strong-interaction studies to nuclei: measurement of proton-deuteron correlations in pp collisions at $\sqrt{s} = 13$ TeV

Bhawani Singh on behalf of the ALICE Collaboration Technical University of Munich Quark Matter 2022 – XXIXth International Conference on Ultra-relativistic Nucleus-Nucleus Collisions, Kraków, Poland

Motivation

- **Proton-deuteron (p-d) interaction:**
 - Three-nucleon system: doorway to test three-body forces.
 - p-d interaction is constrained with scattering experiments.

Formation mechanism of light (anti)nuclei is still under debate in the scientific community:

- and Coalescence Model³.
- No test of the (anti)deuteron formation time so far!

Femtoscopy correlation: probes the interaction and the source size for proton-deuteron pairs.

- ¹J. Cleymans et al., Phys. Rev. C 74, 034903 (2006),
- ²J. Cleymans and H. Satz., Z. Phys. C 57, 135–147 (1993)
- ³K. Blum et al. Phys. Rev. C 99, 04491(2019)

bhawani.singh@cern.ch

Two models are employed to describe (anti)deuteron spectra and yields: Statistical Hadronisation Model^{1,2}

Femtoscopy

• The main observable is the **correlation function(CF)**:

$$C(k^*) = \int S(\vec{r}^*) |\psi(\vec{k}^*, \vec{r}^*)|^2 \mathrm{d}^3 r^* = \mathcal{N} \frac{N_{\mathrm{same}}(k^*)}{N_{\mathrm{mixed}}(k^*)}$$

Theory

Experiment

- Two ingredients:
 - **Emitting source**: hypersurface of kinematic freeze-out for final-state particles
 - in pp collision $r_{eff} \sim 1$ fm (Gaussian profile)
 - **Two-particle relative wave function**: expresses the interaction between particles.

CATS: D.L. Mihaylov et al, Eur.Phys.J. C78 (2018) no.5, 394

bhawani.singh@cern.ch

The analysis

Collision system: pp at $\sqrt{s} = 13$ TeV high-multiplicity

trigger

- **Momentum reconstruction:** TPC and TPC+TOF
- (anti)proton: $0.5 < p_T < 4.0 \text{ GeV}/c$
- (anti)deuteron: $0.5 < p_T < 1.4 \text{ GeV}/c$
- Avg. transverse mass($< m_T >$): 1.65 GeV/ c^2

Quark Matter 2022 Poster Session

Measurement: p-d correlations and model

- Two-particle s-wavefunction accounting for Coulomb and strong interaction¹.
- Coulomb + strong interaction (S = 1/2 and S = 3/2).
- Assumption: p and d are point-like particles!
- The source size $r_{eff} = 1.06 \pm 0.04$ fm: extracted by using $\langle m_T \rangle =$
 - 1.67 GeV/ c^2 and effects of resonances are added².

Quark Matter 2022 Poster Session

J. Arvieux et al. Nucl. Phys. A 221 253-268 (1973)

bhawani.singh@cern.ch

formation of the deuteron.

4

Summary and outlook

Summary:

- First measurement of proton-deuteron correlations in high multiplicity pp collisions at \sqrt{s} = 13 TeV. In contrast to the p-d data, the models show a huge peak at low k^* .
- Delay in formation time of (anti)deuterons in hadron-hadron collisions could be the reason behind discrepancies.

Outlook:

- More precision studies with the large data samples in Run 3.

Work in progress: p-d potential models based on three-body dynamics to strengthen the physics message.

