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Track Matching Traditional method (Kalman filter)

for ALICE forward detectors Pb-Pb+p X400 X2, X2 > pu*u~,4/sSyn = 5.5TeV minimum bias
Muon Chamber (MCH) Simulation with Pythia8hi
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Track Matching with Machine Learning

Some methods against unbalance but..

Classification by machine learning
Example- data processing (sampling) at training stage

Example: Classify whether Bird or any other animals
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Track Matching: The reason why these methods

Classify whether Correct or Wrong MCH tracks didn’'t work well

MFT tracks IeSS than 10 one of the input distriutions
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New Technique

New technique : “Learn to Rank”
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Result of Machine Learning

Purity Vs Efficiency for different thresholds of predicted probability
Ranking (predicted probability) 1 “Learn to Rank” (Machine Learning)
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Summary and Outlook

Summary

- Track Matching for ALICE forward detectors is very challenging due to high
multiplicity and multiple scattering

- Data processing at training stage and weighted learning didn’t contribute to
improve results due to overlapping of the distribution of feature parameters

- New technigue “Learn to Rank” helps to improve result.

Out look
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- Reduce the number of candidates with the highest prediction
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Thank you !



