Measurement of $R_2(\Delta \eta, \Delta \varphi)$ and $P_2(\Delta \eta, \Delta \varphi)$ correlation functions in pp collisions at $\sqrt{s} = 13$ TeV using ALICE data

Baidyanath Sahoo (for the ALICE Collaboration)
IIT Bombay, Mumbai, India

• 4 different charge combinations for R_2 and P_2:

$O^{(+,-)}, O^{(-,+)}, O^{(+,+)}$ and $O^{(-,-)}$; $O \equiv \{R_2, P_2\}$

1. $O^{US} = \frac{1}{2}(O^{(+,-)} + O^{(-,+)}) \rightarrow \text{Unlike-Sign (US)}$

2. $O^{LS} = \frac{1}{2}(O^{(+,+)} + O^{(-,-)}) \rightarrow \text{Like-Sign (LS)}$

3. $O^{CI} = \frac{1}{2}(O^{US} + O^{LS}) \rightarrow \text{Charge-Independent (CI)}$

4. $O^{CD} = \frac{1}{2}(O^{US} - O^{LS}) \rightarrow \text{Charge-Dependent (CD)}$

For pp $\sqrt{s} = 13$ TeV

ALICE, PRL 116, 222302 (2016)

ALICE, PRL 118, 162302 (2017),
ALICE, PRC 100, 044903 (2019)
R_2 and P_2 correlation functions in Pb-Pb @ $\sqrt{s_{NN}} = 2.76$ TeV

Balance Function

$$R_2(\Delta \eta, \Delta \phi) = \frac{\rho_2(\Delta \eta, \Delta \phi)}{\rho_1(\Delta \eta, \Delta \phi)} - 1$$

Charge Balance, Diffusivity

Radial flow

$\mathcal{R}_{2}^{\text{CD}} = \frac{1}{2} (R_{2}^{US} - R_{2}^{LS})$

$\mathcal{P}_{C}^{\text{I}} = \frac{1}{2} (P_{2}^{US} + P_{2}^{LS})$

$\mathcal{P}_{2}(\Delta \eta, \Delta \phi) = \frac{1}{\langle p_T \rangle^2} \int_{p_T,\text{min}}^{p_T,\text{max}} \rho_2(p_{T,1}, \eta_1, \phi_1; p_{T,2}, \eta_2, \phi_2) \Delta p_{T,1} \Delta p_{T,2} \, dp_{T,1} dp_{T,2}$

Where $\Delta p_{T,i} = p_{T,i} - \langle p_T \rangle$

Related to Temperature Fluctuations: $P_2^{\text{CI}} \propto \frac{\Delta T}{T}$

Why did we use R_2 & P_2?

1. Dimensionless quantity.
2. Robust observable:
 Independent of detection efficiency[1]

[1] M. Sharma and C. A. Pruneau, PRC 79, 024905 (2009)

ALICE, PRL 118, 162302 (2017)

ALICE, PRC 100, 044903 (2019)
R_{2}^{CD} and P_{2}^{CD} correlation functions in pp MB @ $\sqrt{s} = 13$ TeV

pp MB @ $\sqrt{s} = 13$ TeV using 2018 ALICE data

$0.2 \leq p_T \leq 2.0$ GeV/c $|\eta| \leq 0.8$

$O^{CD} = \frac{1}{2}(O^{US} - O^{LS})$; $O \equiv \{R_{2}, P_{2}\}$

Angular ordering

- Dip in R_{2}^{CD} and P_{2}^{CD} is expected to result largely from HBT effect.
- Difference in shape and width between R_{2}^{CD} and P_{2}^{CD}.
- P_{2}^{CD} is narrower than R_{2}^{CD} \(\rightarrow \) Angular ordering$^{[1]}$

Width of the correlation functions

- The widths decrease monotonically in Pb-Pb collisions from peripheral to central regions for both R_2 (strong) and P_2 (modest) → Radial flow, Diffusivity
- For p-Pb case, the widths have noticeable reduction for R_2 whereas widths of P_2 have reverse trend.

- The widths increase monotonically in Pb-Pb collisions from peripheral to central regions for both R_2 and P_2 except for P_2 in peripheral region → Anisotropic flow
- For p-Pb case, the widths have weak dependence.

Summary

- Widths of R_2 show \sqrt{s} dependence.
- Widths of P_2 show $\langle p_T \rangle$ and \sqrt{s} dependence.
- P_2 is narrower than R_2 due to angular ordering.
- Widths for different system show consistence.