A novel algorithm of event mixing for ALICE Run 3

Maja Kabus

Quark Matter, 08.04.2022

A novel algorithm of event mixing for ALICE Run 3

Angular and femtoscopic correlations: analyzing QGP initial state and thermalization mechanisms
Correlation function: $\quad S(\Delta \eta, \Delta \phi)=\frac{d^{2} N^{\text {signal }}}{\Delta \eta \Delta \phi} \quad B(\Delta \eta, \Delta \phi)=\frac{d^{2} N^{\text {mixed }}}{\Delta \eta \Delta \phi}$

$$
C(\Delta \eta, \Delta \phi)=\frac{N^{\text {mixed }}}{N^{\text {signal }}} \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}
$$

Event mixing: pairs of tracks (VOs/cascades/...) from 2 different collisions from the same bin, e.g., multiplicity and z-vertex intervals.

Run 2: sort collisions into a vector of mixing buffers, at the same time select pairs in a double loop

In this poster:

Run 3: many more collisions \rightarrow big memory and time overhead Idea: lazy generation (one at time) of combinations of elements, without data copies mixed-event pairs: binned combinations of collisions + full track combinations
Universal - any n-tuple, any table. Time and memory performance promising

How to implement combinations effectively?

combinations - pairs, triples, ... of elements from a table or different tables
Memory to store all tuples: $\mathbf{O}(\mathbf{n}!$) where n is the table size $->$ too much! -> Lazy generation - one tuple by one
iterator - refers to a certain row in a table

mMaxOffset: $(5,6,5)$
mCurrent:
$(0,0,0) \rightarrow(0,0,1) \rightarrow \ldots \rightarrow(0,0,4) \rightarrow(0,0,5) \rightarrow(0,1,0) \rightarrow \ldots \rightarrow(5,6,5)$
:---
iterator

end of the
combination

end of table $, 6,5$ | the last but one |
| :--- |
| iterator moved forward |

Event mixing

BinningPolicy<collision::PosX, collision::PosY> binning\{\{xBins, yBins\}\}; SameKindPair<aod::Collisions, aod::Tracks> pair\{binning\}; for (auto\& [c1, tracks1, c2, tracks2] : pair)
tracks1 (tracks2) contains only tracks from the collision c1 (c2)

How much time does it take?

- naive looping: AliPhysics algorithm re-implemented in O 2 benchmark with O 2 tables
- both algorithms have linear complexity w.r.t. number of collision pairs
- $8 \times$ Intel ${ }^{\circledR}$ Core $^{\text {TM }}$ i5-8250U CPU
- on average 1000 tracks / collision
- 10 benchmark repetitions
- event mixing buffer size of 5

Same or shorter processing time but with many more functionalities:

- any tuple, not only a pair/triple
- any input tables, not just collisions and tracks
- different elements in a tuple, e.g., tracks-VOs
- user can supply his own customized binning class
- various combination policies

More code optimization ongoing.

