Performance studies of D^0-\bar{D}^0 azimuthal correlations in ALICE3

Eszter Frajna 1,2, Róbert Vértesi 1 on behalf of the ALICE Collaboration

Quark Matter Kraków 2022

1 Wigner Research Centre for Physics, MTA Centre of Excellence
2 Budapest University of Technology and Economics
Azimuthal correlations of D^0-\bar{D}^0 pairs provide
- a direct access to charm production mechanisms in pp collisions [1].
- a **direct measure of momentum broadening** by the QGP in Pb-Pb collisions, sensitive to the nature of the **energy loss mechanism**, as well as the **degree of charm thermalization in the QGP** at low p_T [2].
The ALICE 3 detector

- ALICE 3: a next-generation heavy-ion experiment for LHC Run 5 [3].
- Compact all-silicon tracker with high-resolution vertex detector.
 - Particle identification over a large acceptance.
 - Heavy-flavour hadrons (\(p_T \rightarrow 0\), wide \(\eta\) range)
 - vertexing, tracking, hadron ID

Reference:
2D mass fits to subtract combinatorial background for D^0-\bar{D}^0 pairs.

Signal + background for single D mesons from PYTHIA 8.2 events. Pair distributions generated from independent 1D distributions.

Statistics matched to the expected significance.

\[
F(M_{D^0}, M_{\bar{D}^0}) = N_{SS} f_{S}^{D^0}(M_{D^0}) f_{S}^{\bar{D}^0}(M_{\bar{D}^0}) + N_{SB} f_{S}^{D^0}(M_{D^0}) f_{B}^{\bar{D}^0}(M_{\bar{D}^0}) \\
+ N_{BS} f_{B}^{D^0}(M_{D^0}) f_{S}^{\bar{D}^0}(M_{\bar{D}^0}) + N_{BB} f_{B}^{D^0}(M_{D^0}) f_{B}^{\bar{D}^0}(M_{\bar{D}^0})
\]

Precise identification of D^0-\bar{D}^0 pairs with a high background rejection can be expected.

2-dimensional invariant mass distribution of D^0 and \bar{D}^0 pairs at $|\eta_{\text{daug}}| < 1.44$
- Calculation of estimated D^0-\bar{D}^0 pairs in Pb-Pb collisions for 35 nb$^{-1}$ luminosity.
- Includes background subtraction and weights to account for D^0-\bar{D}^0 reconstruction and selection efficiencies. Normalization to the number of trigger D^0 mesons.
- Correlation patterns in Pb-Pb collisions will be detailed enough to assess the effects of transport broadening and thermalisation, using pp collisions as a reference.

Expected performance for azimuthal correlation distributions of D^0 and \bar{D}^0 in $|\eta|<4$, in 0-100% Pb-Pb collisions, for $L_{\text{int}} = 35$ nb$^{-1}$.

Letter of Intent