# Studies of tracking performance for a future fixed target programme in ALICE

Md Rihan Haque

Warsaw University of Technology, Poland

collaborators: C. Hadjidakis, D. Kikola, L. Massacrier

Quark Matter 4-10 April, 2022







Md Rihan Haque

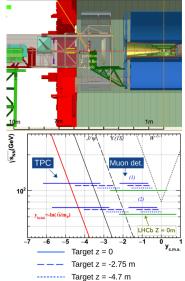
WUT Poland

TPC Performance in Run-3 for ALICE FT

#### Md Rihan Haque

# Motivation for Fixed Target Setup

### Motivation:


- ★ Measurement in high x frontier.
- ★ Variable target system *e.g.*, C, W, Au.
- ★ CMS energy  $\sqrt{s_{\rm NN}} = 115$  and 72 GeV for p - A and Pb - A systems, respectively.
- ★ Study longitudinal expansion of QGP.
- ★ Factorization of CNM effects & more [1]

## Fixed Target Setup in ALICE:

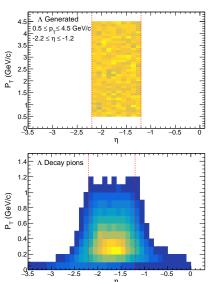
- proton beam halo can be channeled with bent crystal [2]
- Optimal target position: 480 cm.
- Integration with existing system possible with retractable taget setup.

### Challenges:

- $\blacktriangleright$  How TPC responses to inclined tracks? (e.g. -2.5  $\leq \eta \leq$  -1.0 ).
- > Can we measure  $\Lambda$ ,  $D^0$  from FT event ?
- <sup>1</sup>C. Hadjidakis *et. al* arXiv:1807.00603v2 [hep-ex]
- <sup>2</sup>M. Patecki, HB2021 Beam Dynamics Workshop.






# **Simulation Configurations**

### For Charged particles:

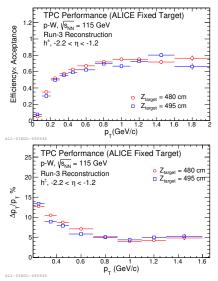
- System: proton on Tungsten (W).
- $\Box$  Energy:  $\sqrt{s_{\rm NN}} = 115$  GeV/c.
- Generator: HIJING (w. Run-2 software).
- Reconstruction: with O2 (Run-3 software).
- $\square$  No. of Events:  $\sim$ 5000 events.
- □ Particles:  $h^{\pm}$  (-2.2 ≤  $\eta$  ≤ -1.2).

### For $\wedge$ particles:

- □ Fast Decay simulation with detector response for h<sup>±</sup>.
- Generated A: Flat in  $p_{\rm T}$  with -2.2  $\leq \eta \leq$  -1.2 and 0  $\leq \phi \leq 2\pi$ .
- Λ Decay: TGenPhaseSpace class (Root).
- No. of Λ: 200K (per set).
- □ Topological cuts: Decay length, M<sub>inv</sub>.
- Daughters treated as per charged particle response.
- Vertex resolution is not taken into account.



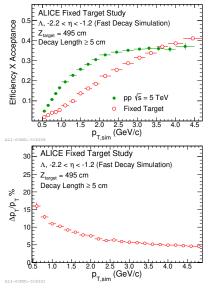





# Simulation Results for Fixed Target (FT) events

### **Observations:**

Tracking Efficieny for charged tracks:


- ★ Efficiency X Acceptance shown for Target positions = 480 cm and 495 cm.
- ★ Efficiency is similar for two positions.
- ★ Efficiency is lower than collider tracks. → But sufficient for analysis.
- $p_{\rm T}$  Resolution of charged tracks:
  - ★  $p_{\rm T}$  resolution estimated with  $N_{cls} \ge 70$ . →  $N_{cls}$  = number of hit points in TPC.
  - ★ p<sub>T</sub> resolution does not depend on target position.
  - ★ p<sub>T</sub> resolution is smaller than collider tracks. → collider tracks has higher N<sub>cls</sub>.
  - ★ Reasonably good  $p_T$  resolution, → without any dedicated tracker.



#### **Observations:**

Tracking Efficieny for  $\Lambda$ :

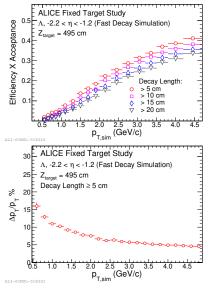
- ★ Efficiency X Acceptance shown for decay length ≥ 5 cm.
- ★ Efficiency is lower than Λ from collider events. → But sufficient for analysis.
- $p_{\rm T}$  Resolution of  $\Lambda$ :
  - ★ p<sub>T</sub> resolution estimated from Λ reconstructed with smeared daughters.
  - ★ Pt resolution sufficient for analysis, → without any dedicated tracker for FT.
  - ★ Caveats: The Λ results should also depend on resolution of the primary vertex, as well as, on the purity of daughter  $\pi$  and p which has not been estimated.





5/7

6/7


#### **Observations:**

Tracking Efficieny for  $\Lambda$ :

- ★ Efficiency X Acceptance decreases with increasing decay length cut.
- ★ With larger decay length cuts, efficiency decreases. → Still sufficient for analysis.

 $p_{\rm T}$  Resolution of  $\Lambda$ :

- ★ p<sub>T</sub> resolution estimated from Λ reconstructed with smeared daughters.
- ★ Pt resolution sufficient for analysis, → without any dedicated tracker for FT.
- ★ Caveats: The Λ results should also depend on resolution of the primary vertex, as well as, on the purity of daughter π and p which has not been estimated.





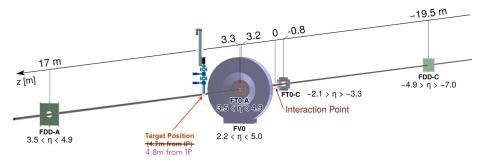
# Summary and Outlook



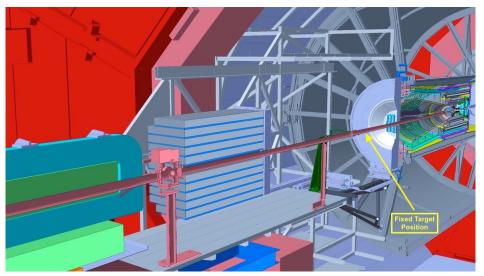
### Summary:

- Charged particle tracking efficiency and p<sub>T</sub> resolution estimated for Fixed Target Setup in ALICE.
- **2** Efficiency and Resolution for charged particles  $\approx$  70% and 5% for  $p_{\rm T}$  ~1 GeV/c.
- **3** Charged particle response is used as proxy for Fast Simulation study of Λ.
- If ast Simulation study of shows that the efficiency and  $p_T$  resolution of  $\Lambda$  are reasonably good (without extra tracking detector).
- I Tracking efficiency and resolution has very weak dependence on Target position, for both Λ and inclusive charged particles.

### ★ Caveats:


– Effects of resolution of the primary vertex, as well as, on the purity of daughter  $\pi$  and  $\rho$  tracks have not been estimated.

### Outlook:


- **PID** dependence of tracking efficiency and  $p_{\rm T}$  resolution.
- Physics performance study using measured efficiency and  $p_{\rm T}$  resolution.
- Direct simulation of V0 and (charmed meson) using ALICE Run-3 software.

### ★ Project is funded by the European Union's Horizon 2020 programme (grant agreement No 824093).

Back up



Target Position sketch-I



Target Position sketch-II