New results on the parton mass and color-charge dependence of jet quenching with ATLAS

Sebastian Tapia Araya
Iowa State University
for the ATLAS collaboration

7 April 2022, Krakow, Poland
Flavor dependence in medium induced Energy loss

Jets are known to lose energy when going through the Quark-Gluon-Plasma.

- Color-charge dependence

\[\sim \frac{4}{3} \]

\[\sim 3 \]

QCD suggest, gluons are more likely to radiate than quarks.

- Mass dependence expected due to “dead-cone effect”

Large parton mass

Small parton mass

Radiation is suppressed in \(\theta < \frac{m}{E} \)
In this talk, two new ATLAS measurements

b-jets vs inclusive jets

$$\sqrt{s} = 5.02 \, \text{TeV}$$

anti-$$k_T$$ R = 0.2

$$|y| < 2.1$$

Pythia8

- **b-jets**
- inclusive jets

Sensitive to color-charge and parton mass

\(\gamma\)-tagged jets vs inclusive jets

ATLAS Simulation Preliminary

$$\sqrt{s} = 5.02 \, \text{TeV}$$

anti-$$k_T$$ R = 0.4 jets

$$|\eta^{\gamma\text{-jets}}| < 2.8$$

For **\(\gamma\)**-tagged jets

- \(p_T^{\gamma} > 50 \, \text{GeV, } |\eta^{\gamma}| < 2.37\)
- \(\Delta\phi(\gamma, \text{jet}) > \pi/2\)

- **Inc. jets**
- **\(\gamma\text{-jets}**
 - Pythia
 - Sherpa
 - Herwig

Sensitive to color-charge
b-jets from semi-leptonic decays

\[p_T^{rel} = \frac{|| \vec{p}_\mu \times \vec{u} ||}{|| \vec{p}_{jet+\mu} ||} \] is the jet + \(\mu \) axis

Muons selection:
- Muon \(p_T > 4 \) GeV
- \(\Delta R(\text{jet}, \mu) < R \)

Raw \(b \)-jet spectra obtained from fit is **unfolded** to correct detector effects and missing neutrino energy
b-jets vs inclusive jets in pp collisions

- **ATLAS**
 - *pp 2017, 260 pb⁻¹*
 - anti-κ, $R = 0.2$ jets
 - $\sqrt{s} = 5.02$ TeV, $|y| < 2.1$

b-jet to inclusive $R=0.2$ cross-section ratio:

- Good agreement found between data and simulation in the ratio
- Comparison to CMS results consistent within errors
- Ratio consistent with flat withing uncertainties, relevant R_{AA} modification interpretation

ATLAS

- *pp 2017, 260 pb⁻¹*
- anti-κ, $R = 0.2$ jets
- $\sqrt{s} = 5.02$ TeV, $|y| < 2.1$

Legend

- ATLAS
- CMS 7 TeV, $R = 0.5$ jets, $|y| < 0.5$
- PYTHIA8 5.02 TeV, $R = 0.2$ jets, $|y|<2.1$
- NNPDFLO23 A14
b-jets vs inclusive jets in Pb+Pb collisions

Nuclear modification factor, R_{AA}, measured for b-jets and inclusive jets:

- **Similar suppression in peripheral collisions**
- b-jet found to be less suppressed than inclusive jets in central collisions
- Both calculations capture the R_{AA} difference
- LIDO calculations reproduce well the measured R_{AA}

![Graph showing R_{AA} versus p_T for b-jets and inclusive jets](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2018-24/)
b-jets vs inclusive jets in Pb+Pb collisions

Nuclear modification factor, R_{AA}, measured for b-jets and inclusive jets:

- Similar suppression in peripheral collisions
- **b-jet found to be less suppressed than inclusive jets in central collisions**
- Both calculations capture the R_{AA} difference
- LIDO calculations reproduce well the measured R_{AA}

Ratio of nuclear modification factor, R_{AA}, between b-jets and inclusive jets:

- Smaller systematic uncertainties than R_{AA}, systematic uncertainties which are shared cancels in ratio
- Ratio consistent with unity in peripheral and ~20% above unity in central collisions
- Dai et al, calculations reproduce well R_{AA} ratio
Ratio of nuclear modification factor, R_{AA}, between b-jets and inclusive jets:

- Smaller systematic uncertainties than R_{AA}, systematic uncertainties which are shared cancels in ratio
- Ratio consistent with unity in peripheral and $\sim 20\%$ above unity in central collisions
- Dai et al, calculations reproduce well R_{AA} ratio
Isolating color-charge effects

We have studied how mass can modify quenching

b-jets vs inclusive jets
Sensitive to color-charge and parton mass

Now, can we ask the same question about color-charge?

γ-tagged jets vs inclusive jets
Sensitive to color-charge
y-tagged jets analysis

\[\Delta \phi(y, \text{jet}) > \pi/2 \]

- Combinatorial background removed
- Correction for background photons using photon purity
- 2D unfolding in y and jet momentum
- Corrects for resolutions, efficiency
\(\gamma \)-tagged jets \(pp \) cross-section

- \(\gamma \)-tagged jets cross-section measured for Jet \(R = 0.4 \) in \(pp \) collisions
- **Fully unfolded** results, \(\gamma \)-tagged jets \(p_T > 50 \) GeV
- Results are compared against generators
 - Good agreement up to 100 GeV
 - Data spectra steeper than MC for \(p_T > 100 \) GeV
 - Sensitive to multijet topology, fragmentation photon contribution
 - Opportunity to improve modeling
γ-tagged jets vs inclusive jets in *pp* and *Pb+Pb* collisions

γ-tagged jets measured for three centralities classes in *Pb+Pb* data

γ-tagged jets to inclusive $R=0.4$ cross-section ratio:

- Relevant for R_{AA} modification interpretation
 - Inclusive jet spectra steeper than γ-tagged jets
 → less suppression for γ-tagged jets
 - Isospin/nPDF effect also plays an important role
 → larger suppression for γ-tagged jets
- The two effects are expected to have similar magnitude but opposite sign

Inclusive jets from *PLB 790 (2019) 108*
γ-tagged jets vs inclusive jets in Pb+Pb collisions

Nuclear modification factor, R_{AA}, measured for γ-tagged jets and inclusive jets from PLB 790 (2019) 108:

- γ-tagged jets R_{AA} measured for three centrality classes, central R_{AA} more suppressed than peripheral
- γ-tagged jets (quark-jet dominant) found to be less suppressed than inclusive (gluon-jet dominant) jets in central collisions

[Graph showing R_{AA} vs γ-tagged jet p_T, with data points and error bars for different centrality classes]
Central collisions nuclear modification factor, R_{AA}, of inclusive jets, γ-tagged jets, and ratio:

- **Inclusive jets** R_{AA}, is well modeled by theoretical calculations.
\(\gamma\)-tagged jets vs inclusive jets in Pb+Pb collisions

Central collisions nuclear modification factor, \(R_{AA}\), of inclusive jets, \(\gamma\)-tagged jets, and ratio:

- Inclusive jets \(R_{AA}\), is well modeled by theoretical calculations
- \(\gamma\)-tagged jets \(R_{AA}\), in general, under-estimated by theoretical calculations
- SCET\(_G\) reproduces both, this results could help constrain the parameter space
γ-tagged jets vs inclusive jets in Pb+Pb collisions

Central collisions

- nuclear modification factor, R_{AA}, of inclusive jets, γ-tagged jets, and ratio:
 - Inclusive jets R_{AA}, is well modeled by theoretical calculations
 - γ-tagged jets R_{AA}, in general, under-estimated by theoretical calculations
 - SCET$_G$ reproduces both, this results could help constrain the parameter space
 - R_{AA} ratio ~30% above unity in central collisions
Evidence of mass and color-charge energy loss dependence find by ATLAS

- **b-jet** R_{AA} central collisions were found to be **less suppressed than inclusive jets for the first time**
- **γ-tagged jets** R_{AA}, dominated by quark-jets, presented for the first time, **found to be less suppressed than inclusive jets**
Thank you!

more results at: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults

New and more precise results coming for **RUN3 data**!
Additional slides
b-jets muon fragmentation

p_T-rel is sensitive to muon momentum modeling

Independent test on muon fragmentation function, “z”, using measured flavor-fractions

$$z = \frac{p_T^\mu \cos(\theta)}{p_T^{jet+\mu}}$$

The muon momentum distribution is well reproduced by PYTHIA8

PYTHIA8 setting:
- **A14** (ATLAS-PHYS-PUB-2014-021)
- **NNPDF23LO** (arXiv:1207.1303)
b-jets *pp* cross-section

- *b*-jet cross-section measured for Jet $R = 0.2$, and 0.4 in *pp* collisions
- **Fully unfolded** results include neutrino energy, *b*-jet p_T range: 80-250 GeV
- Results are compared against generators and theoretical calculations

ATLAS

pp 2017, 260 pb$^{-1}$
anti-k_t, $R = 0.4, 0.2$ *b*-jets
$\sqrt{s} = 5.02$ TeV, $|y| < 2.1$

Theory/Data

- Li and Vitev
- Li and Vitev; uncertainty
- PYTHIA8 NNPDF23lo A14
- HERWIG7 NNPDF30nlo

R = 0.4 total uncertainty

R = 0.2 total uncertainty

b-jets R_{AA} CMS comparison

ATLAS

Pb+Pb 2018, 1.4 nb$^{-1}$

pp 2017, 260 pb$^{-1}$

anti-k_T, $R = 0.2$ b-jets, $|y| < 2.1$

$\sqrt{s_{NN}} = 5.02$ TeV

ATLAS

Pb+Pb 2018, 1.4 nb$^{-1}$

pp 2017, 260 pb$^{-1}$

anti-k_T, $R = 0.2$ b-jets, $|y| < 2.1$

$\sqrt{s_{NN}} = 5.02$ TeV

b-jets systematics

ATLAS

- Pb+Pb 2018, 1.4 nb⁻¹, √s_{NN} = 5.02 TeV
- pp 2017, 260 pb⁻¹, √s = 5.02 TeV
- anti-κ, R = 0.2, b-jet, |y| < 2.1

Centrality 0-20%

- pp lumi. uncer. 1.6%
- Pb+Pb 1.4(1.7) nb⁻¹, √s_{NN} = 5.02 TeV

ATLAS

- Pb+Pb 2018, 1.7 nb⁻¹, √s_{NN} = 5.02 TeV
- pp 2017, 260 pb⁻¹, √s = 5.02 TeV
- anti-κ, R = 0.2, inclusive jet, |y| < 2.1

Centrality 0-20%

- pp lumi. uncer. 1.6%