Measurements of the azimuthal anisotropy and substructure of jets in Pb+Pb collisions with the ATLAS detector

Anne M. Sickles, for the ATLAS Collaboration
April 6, 2022
existing, precise, measurements of jet R_{AA} in PbPb collisions

definition: R_{AA}

jet v_n

$n > 2$ & large kinematic reach

substructure dependent R_{AA}

how do we understand the observed suppression in terms of geometry & jet structure?

absolutely normalized measurements to directly compare energy loss
measurements of the jet rates as a function of 2, 3 & 4th order event planes

sensitive to the path length dependence of jet energy loss

accepted in PRC, 2111.06606
analysis procedure

- jet angle measured wrt event plane measured with $4.0 < |\eta| < 4.9$
- reduces any bias on the event plane from the away side jet
- jet momentum is unfolded
- jet position resolution is greatly improved by using small $R = 0.2$ jets

2111.06606
jet v_2

- $v_2 > 0$ observed for all but the most central collisions
- v_2 decreases with increasing p_T but remains > 0 in mid-central collisions up to at least 250 GeV
centrality dependence of jet v_n

- v_2 largest in mid-central collisions; consistent with 0 in the most central collisions
- $v_3 \sim 1\%$ for mid-central/central collisions
 - for both v_2 & v_3 the centrality dependence is similar to that of hydrodynamic v_n which is driven by the initial collision geometry
- suggests the same geometry plays a significant role in jet quenching
- v_4 consistent with 0
 - larger uncertainties from poor 4th order event plane resolution
comparison to previous measurements

- full Run 2 data & jets provide large increase in precision and kinematic range over 2.76 TeV results & charged hadron measurements
comparisons to theory

both LBT (1811.08975) and LIDO (2010.13680) get the size of the v_2 & v_3 well, except for the p_T dependence of the v_2 below ~100 GeV which is stronger in data than the models

2111.06606
substructure dependent R_{AA}

does R_{AA} depend on the structure of the jet?

increasing distance between subjets
large R jets

\[\sqrt{d_{12}} = \min(p_{T1}, p_{T2}) \times \Delta R_{12} \]

- R = 1.0 jets composed of R = 0.2 jets with \(p_T > 35 \) GeV
- removes soft, diffuse energy from the jets

if there is only a single sub-jet (SSJ) \(\rightarrow \sqrt{d_{12}} = 0 \)
R_{AA} of these jets

$R = 1.0$ jets suppressed out to 800 GeV

jets with a single sub-jet (SSJ) are less suppressed than those with >1 sub-jet
track-calo clusters (TCCs)

TCCs use the tracks to improve the substructure performance of the clusters & allow a closer look at small angles than is possible in the $\sqrt{s_{12}}$ measurement.

Here TCCs with $p_T > 4$ GeV are used to reduce the effect of the underlying event.

Jets are the same calorimeter jets as in previous ATLAS HI measurements to allow for direct comparison to other measurements.
analysis procedure

• Jets are reclustered with C/A algorithm and iteratively declustered till the subjets satisfy the Soft Drop (SD) condition

• jets are $R = 0$ calorimeter jets; substructure constituents are TCCs

 • r_g and jet p_T are unfolded using 2D Bayesian unfolding to the truth level

\[z_g = \frac{\min(p_{T,i}, p_{T,j})}{p_{T,i} + p_{T,j}} > z_{cut} \left(\frac{\Delta R_{i,j}}{R} \right)^\beta \]

\[z_{cut} = 0.2 \quad \beta = 0 \]

\[r_g = \Delta R_{i,j} \quad \text{between the subjets satisfying the SD condition} \]
\(r_g \) distributions

\[\langle T_{AA} \rangle \frac{1}{N_{\text{evt}}} \frac{d^2N}{d_r \, d_g \, dp_T^\text{jet}} \]

ATLAS Preliminary

Pb+Pb 5.02 TeV, 1.72 nb\(^{-1}\)

\(p_T^{\text{jet}} > 158 \) GeV

- 158 < \(p_T^{\text{jet}} \) < 200 GeV (×0.05)
- 200 < \(p_T^{\text{jet}} \) < 315 GeV (×0.5)
- 315 < \(p_T^{\text{jet}} \) < 501 GeV (×5)

\(z_{\text{cut}} = 0.2, \beta = 0 \)

ATLAS Preliminary

Pb+Pb 5.02 TeV, 1.72 nb\(^{-1}\)

\(p_T^{\text{jet}} > 158 \) GeV

- 158 < \(p_T^{\text{jet}} \) < 200 GeV (×0.05)
- 200 < \(p_T^{\text{jet}} \) < 315 GeV (×0.5)
- 315 < \(p_T^{\text{jet}} \) < 501 GeV (×5)

\(z_{\text{cut}} = 0.2, \beta = 0 \)

- \(\langle T_{AA} \rangle \frac{1}{N_{\text{evt}}} \frac{d^2N}{d_r \, d_g \, dp_T^\text{jet}} \)

- \(\langle T_{AA} \rangle \frac{1}{N_{\text{evt}}} \frac{d^2N}{d_r \, d_g \, dp_T^\text{jet}} \)

\(r_g \) distribution shape has jet \(p_T \) dependence but little centrality dependence

ATLAS-CONF-2022-026
r_g dependence of suppression

ATLAS Preliminary

pp 5.02 TeV, 260 pb$^{-1}$

$Pb+Pb$ 5.02 TeV, 1.72 nb$^{-1}$

$z_{cut} = 0.2$, $\beta = 0$

large r_g jets more suppressed

similar trends with r_g for all centralities

ATLAS-CONF-2022-026
r_g dependence of suppression

- clear r_g dependence to R_{AA}
- r_g, not jet p_T, determines the R_{AA}
Summary

Jet azimuthal anisotropies show path length dependence of jet quenching.

Jet suppression shows strong r_g dependence within $R = 0.4$ jets.

Both geometry and substructure play a significant role in jet quenching.

See all ATLAS Heavy Ion results here: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults
backups
theory comparison

ATLAS Preliminary

Inclusive

R_{AA}

p_T^{jet} [GeV]

$|z| < 1.8$ GeV

$Q_s < 1.2$ GeV

$0.17 < \alpha_{med} < 0.35$

$0.26 < r_g < 0.40$

$0.11 < r_g < 0.26$

$0.02 < r_g < 0.11$

$r_g = 0$

$0.00 < r_g < 0.02$

$|y| = 0.4$ jets, $|R_t| < 0.2,

$\beta = 0$

$\gamma < 2.1$

$pp 5.02$ TeV, 260 pb^{-1}

$Pb+Pb 5.02$ TeV, 1.72 nb^{-1}

Caucal et al.

$0 - 10 \%$