ATLAS measurement of the two-particle correlation sensitivity to jets in pp collisions

Penggi Yin on behalf of the ATLAS collaboration

ATLAS measurement of the two-particle correlation sensitivity to jets in pp collisions

Pengqi Yin on behalf of the ATLAS collaboration

Or, selecting e

the two-partic

Multiplicit

> The v_n are weakly varying with multiplicity.

 \triangleright The v_2 in *AllEvents* and *NoJet* sets are only slightly smaller than the Inclusive set.

➤ The 120 in the With let set are consistent with the Inclusive set within uncertainties.

> The v₃ are larger in AllEvents and NoJet

> Indicate possible non-flow bias in Inclusive.

 \triangleright The v_n values are observed to be similar over the $p_{\rm T}^{\rm b}=0.5-3$ GeV range.

 \triangleright At higher p_T , the v_2 in *AllEvents* and NoJet sets are larger than the Inclusive.

➤ The v₃ at higher p_T show considerably larger differences compared with

Indicate possible non-flow bias in Inclusive

> The ΣE_TFCal, using independent sets of particles to determine the event activity, is less biased than multiplicity.

The observed differences for v_2 and v_3 between the AllEvents /NoJet sets and the Inclusive set are similar to that observed in the multiplicity dependence

> The v2 in WithJet set are consistent with the other sets within uncertainties.

Conclusion: These measurements indicate that long-range correlations in pp collisions are only slightly affected when particles associated with hard or semi-hard processes in the event are removed.

> Support: The United States Department of Energy Grant DOE-FG02-86ER-40281

ATLAS measurement of the two-particle correlation sensitivity to jets in pp collisions

Pengqi Yin on behalf of the ATLAS collaboration

Introduction

In two particle correlation (2PC) measurements in nucleus-nucleus collisions, long-range correlations along Δη are understood to arise from the collective expansion of the Quark-Gluon Plasma (GGP).

- The long-range correlations are also found in a small systems such as protonnucleus (p+A) or pp collisions.
- The origin of the long-range correlation in small system is still under discussion.
- > May arise from semi-hard processes
- In this case, removing particles associated with jets would weaken the long-range correlation
- Or, selecting events with jets may enhance the two-particle correlations even if fragments of them jets are excluded.

Methodology

Jet reconstruction and corrections

- ➤ Reconstructed using the FastJet package
- \triangleright Anti- $k_{\rm T}$ algorithm with R = 0.4.
- The p_T^{jet} is corrected to account for the average combinatorial contribution of underlying event (UE) tracks.

$$p_{\mathrm{T}}^{\mathrm{jet,corr}} = p_{\mathrm{T}}^{\mathrm{jet}} - \pi R^2 \; \rho(\eta,\phi,p_{\mathrm{T}})$$

Event Sets

- NoJet: Events that do not have a jet with p_T^{jet} greater than 10 GeV
- WithJet*: Events that have at at least one jet with p_T^{jet} greater than 10 GeV
- > AllEvents*: NoJet + WithJet
- > Inclusive: NoJet + WithJet

With rejections of particles associated with i

Rejection of jet-particles from 2PC

Simply rejecting all tracks within a R = 0.4 cone of the jet axis would introduce artificial structures along the Δφ in 2PC.

 ΣE_{T}^{FCal} dependence

ightharpoonup Instead, tracks within IΔη I<1 of any $p_{\rm T}^{\rm jet}$ >10 GeV jet are removed from the analysis.

Results

Multiplicity dependence

- \triangleright The v_n are weakly varying with multiplicity.
- \succ The v_2 in *AllEvents* and *NoJet* sets are
- only slightly smaller than the Inclusive set.

 ➤ The v₂ in the WithJet set are consistent
- with the *Inclusive* set within uncertainties.
- ➤ The v₃ are <u>larger</u> in *AllEvents* and *NoJet*.
- > Indicate possible non-flow bias in Inclusive.

p_{T} dependence

- \succ The v_n values are observed to be similar over the $p_{\mathrm{T}}^{\mathrm{b}}=0.5-3$ GeV range.
- ➤ At higher p_T , the v_2 in *AllEvents* and *NoJet* sets are <u>larger</u> than the *Inclusive*.
- The v_3 at higher $p_{\rm T}$ show considerably larger differences compared with
- > Indicate possible non-flow bias in Inclusive

- The ΣE_T^{FCal}, using independent sets of particles to determine the event activity, is less biased than multiplicity.
- ➤ The observed differences for v₂ and v₃ between the AllEvents /No.Jet sets and the Inclusive set are similar to that observed in the multiplicity dependence.
- The v₂ in WithJet set are consistent with the other sets within uncertainties.

Conclusion: These measurements indicate that long-range correlations in pp collisions are only slightly affected when particles associated with hard or semi-hard processes in the event are removed.

> Reference: ATLAS-CONF-2020-018

> Support: The United States Department of Energy Grant DOE-FG02-86ER-40281

Introduction

- In two particle correlation (2PC) measurements in nucleus-nucleus collisions, long-range correlations along Δη are understood to arise from the collective expansion of the Quark-Gluon Plasma (QGP).
- ➤ The long-range correlations are also found in a small systems such as protonnucleus (*p*+A) or *pp* collisions.
- > The origin of the long-range correlation in small system is still under discussion.
- May arise from semi-hard processes
 - In this case, removing particles associated with jets would weaken the long-range correlation.
- Or, selecting events with jets may enhance the two-particle correlations even if fragments of them jets are excluded.

ATLAS measurement of the two-particle correlation sensitivity to jets in pp collisions

Pengqi Yin on behalf of the ATLAS collaboration

Introduction

In two particle correlation (2PC) measurements in nucleus-nucleus collisions, long-range correlations along Δη are understood to arise from the collective expansion of the Quark-Gluon Plasma (QGP).

- The long-range correlations are also found in a small systems such as protonnucleus (p+A) or pp collisions.
- The origin of the long-range correlation in small system is still under discussion.
- May arise from semi-hard processes
- In this case, removing particles associated with jets would weaken the long-range correlation
- Or, selecting events with jets may enhance the two-particle correlations even if fragments of them jets are excluded.

....

- Jet reconstruction and corrections
 ➤ Reconstructed using the FastJet package
- \triangleright Anti- $k_{\rm T}$ algorithm with R = 0.4.
- The p_T^{jet} is corrected to account for the average combinatorial contribution of underlying event (UE) tracks.

$$p_{\mathrm{T}}^{\mathrm{jet,corr}} = p_{\mathrm{T}}^{\,\mathrm{jet}} - \pi R^2 \, \rho(\eta,\phi,p_{\mathrm{T}})$$

Event Sets

- NoJet: Events that do not have a jet with p_T^{jet} greater than 10 GeV
- WithJet*: Events that have at at least one jet with p_T^{jet} greater than 10 GeV
- > AllEvents*: NoJet + WithJet
- > Inclusive: NoJet + WithJet

* With rejections of particles associated with

Rejection of jet-particles from 2PC

- Simply rejecting all tracks within a R = 0.4 cone of the jet axis would introduce artificial structures along the Δφ in 2PC.
- ightarrow Instead, tracks within IΔη I<1 of any $p_{\rm T}^{\rm jet}$ >10 GeV jet are removed from the analysis.

Results

Multiplicity dependence

- \triangleright The v_n are weakly varying with multiplicity.
- ➤ The v₂ in *AllEvents* and *NoJet* sets are only slightly smaller than the *Inclusive* set.
- \succ The v_2 in the *WithJet* set are consistent
- with the *Inclusive* set within uncertainties.

 > The v_3 are <u>larger</u> in *AllEvents* and *NoJet*.
- > Indicate possible non-flow bias in Inclusive.

p dependence

- ightharpoonup The v_n values are observed to be similar over the $p_{
 m T}^{\rm b}=0.5-3$ GeV range.
- ➤ At higher p_T , the v_2 in *AllEvents* and *NoJet* sets are <u>larger</u> than the *Inclusive*.
- Novet sets are <u>larger</u> than the *inclusive*.

 The v_3 at higher p_T show considerably larger differences compared with
- > Indicate possible non-flow bias in Inclusive.

$\Sigma E_T^{ m FCal}$ dependence

- The ΣE_T^{FCal}, using independent sets of particles to determine the event activity, is less biased than multiplicity.
- The observed differences for v₂ and v₃ between the AllEvents /No.let sets and the Inclusive set are similar to that observed in the multiplicity dependence.
- > The v_2 in WithJet set are consistent with the other sets within uncertainties.

Conclusion: These measurements indicate that long-range correlations in pp collisions are only slightly affected when particles associated with hard or semi-hard processes in the event are removed.

> Reference: ATLAS-CONF-2020-018

> Support: The United States Department of Energy Grant DOE-FG02-86ER-40281

ATLAS

Methodology

Jet reconstruction and corrections

- > Reconstructed using the FastJet package.
- \triangleright Anti- $k_{\rm T}$ algorithm with R = 0.4.
- ➤ The p_T^{jet} is corrected to account for the average combinatorial contribution of underlying event (UE) tracks.

$$p_{\mathrm{T}}^{\mathrm{jet,corr}} = p_{\mathrm{T}}^{\mathrm{jet}} - \pi R^2 \, \rho(\eta, \phi, p_{\mathrm{T}})$$

Event Sets

- NoJet: Events that do not have a jet with p_T^{jet} greater than 10 GeV
- \triangleright With Jet*: Events that have at at least one jet with $p_{\rm T}^{\rm jet}$ greater than 10 GeV
- > AllEvents*: NoJet + WithJet
- > Inclusive: NoJet + WithJet
- * With rejections of particles associated with jets

Rejection of jet-particles from 2PC

- > Simply rejecting all tracks within a R = 0.4 cone of the jet axis would introduce artificial structures along the $\Delta \phi$ in 2PC.
- ► Instead, tracks within |Δη|<1 of any $p_{\rm T}^{\rm jet}>10$ GeV jet are removed from the analysis.

ATLAS measurement of the two-particle correlation sensitivity to jets in pp collisions

Penggi Yin on behalf of the ATLAS collaboration

> In two particle correlation (2PC) measurements in nucleus-nucleus collisions, long-range correlations along Δn are understood to arise from the collective expansion of the Quark-Gluon Plasma (QGP).

Introduction

- > The long-range correlations are also found in a small systems such as protonnucleus (p+A) or pp collisions.
- > The origin of the long-range correlation in small system is still under discussion.
- May arise from semi-hard processes
- In this case, removing particles associated with jets would weaken the long-range
- > Or, selecting events with jets may enhance the twe-particle correlations even if ragments of them jets are excluded.

Methodology

Jet reconstruction and corrections

- > Reconstructed using the FastJet package
- \triangleright Anti- $k_{\rm T}$ algorithm with R = 0.4.
- \succ The $p_{\mathrm{T}}^{\mathrm{jet}}$ is corrected to account for the average combinatorial contribution of underlying event (UE) tracks.

$$p_{\mathrm{T}}^{\mathrm{jet,corr}} = p_{\mathrm{T}}^{\mathrm{jet}} - \pi R^2 \, \rho(\eta, \phi, p_{\mathrm{T}})$$

Event Sets

- Events that do not have a jet with $p_{\mathrm{T}}^{\mathrm{jet}}$ greater than 10 GeV
- Events that have at at least one jet with $p_{\mathrm{T}}^{\mathrm{jet}}$ greater than 10 GeV
- > AllEvents*: NoJet + WithJet
- > Inclusive: NoJet + WithJet * With rejections of particles associated with jets

Rejection of iet-particles from 2PC

- Simply rejecting all tracks within a R = 0.4 cone of the jet axis would introduce artificial structures along the $\Delta \phi$ in 2PC.
- Instead, tracks within IΔn I<1 of any</p> $p_{\rm T}^{\rm jet}$ >10 GeV jet are removed from the

Results

Multiplicity dependence

- \triangleright The v_n are weakly varying with multiplicity.
- \triangleright The v_2 in *AllEvents* and *NoJet* sets are only slightly smaller than the Inclusive set.
- The 120 in the With let set are consistent
- with the Inclusive set within uncertainties.
- > Indicate possible non-flow bias in Inclusive.
- ➤ The v₃ are <u>larger</u> in *AllEvents* and *NoJet*.

$p_{\rm T}$ dependence

- \triangleright The v_n values are observed to be similar over the $p_{\rm T}^{\rm b}=0.5-3$ GeV range.
- \triangleright At higher p_T , the v_2 in *AllEvents* and NoJet sets are larger than the Inclusive.
- \triangleright The v_3 at higher p_T show considerably larger differences compared with
- > Indicate possible non-flow bias in Inclusive

ΣE_{T}^{FCal} dependence

- ightharpoonup The $\Sigma E_{\mathrm{T}}^{\mathrm{FCal}}$, using independent sets of less biased than multiplicity.
- The observed differences for v_2 and v_3 between the AllEvents /NoJet sets and the Inclusive set are similar to that observed in the multiplicity dependence
- The v₂ in WithJet set are consistent with the other sets within uncertainties

particles to determine the event activity, is

Results

Multiplicity dependence

- \triangleright The v_n are weakly varying with multiplicity.
- \triangleright The v_2 in *AllEvents* and *NoJet* sets are only slightly smaller than the Inclusive set.
- \triangleright The v_2 in the *WithJet* set are consistent with the Inclusive set within uncertainties.
- \triangleright The v_3 are <u>larger</u> in *AllEvents* and *NoJet*.
- > Indicate possible non-flow bias in Inclusive.

p_{T} dependence

- \triangleright The v_n values are observed to be similar over the $p_T^b = 0.5 - 3$ GeV range.
- \triangleright At higher p_T , the v_2 in *AllEvents* and NoJet sets are larger than the Inclusive.
- \triangleright The v_3 at higher p_T show considerably larger differences compared with Inclusive.
- > Indicate possible non-flow bias in *Inclusive*.

ΣE_{T}^{FCal} dependence

- \triangleright The $\Sigma E_{\rm T}^{\rm FCal}$, using independent sets of particles to determine the event activity, is less biased than multiplicity.
- \triangleright The observed differences for v_2 and v_3 between the AllEvents /NoJet sets and the Inclusive set are similar to that observed in the multiplicity dependence.
- \triangleright The v_2 in WithJet set are consistent with the other sets within uncertainties.

> Reference: ATLAS-CONF-2020-018

> Support: The United States Department of Energy Grant DOE-FG02-86ER-40281

ATLAS measurement of the two-particle correlation sensitivity to jets in pp collisions

Pengqi Yin on behalf of the ATLAS collaboration

Introduction

 Δn are understood to arise from the collective expansion of the Quark-Gluon

> The long-range correlations are also

nucleus (p+A) or pp collisions. > The origin of the long-range correlation in

found in a small systems such as proton-

small system is still under discussion.

> In this case, removing particles associated

with iets would weaken the long-range

May arise from semi-hard processes

Methodology

Jet reconstruction and corrections > In two particle correlation (2PC) measurements in nucleus-nucleus > Reconstructed using the FastJet package collisions, long-range correlations along

 \triangleright Anti- $k_{\rm T}$ algorithm with R = 0.4. \triangleright The $p_{\mathrm{T}}^{\mathrm{jet}}$ is corrected to account for the average combinatorial contribution of

underlying event (UE) tracks.
$$p_{_{\mathrm{T}}}^{\mathrm{jet,corr}} = p_{_{\mathrm{T}}}^{\mathrm{jet}} - \pi R^{2} \, \rho(\eta,\phi,p_{_{\mathrm{T}}})$$

Event Sets

- Events that do not have a jet with $p_{\rm T}^{\rm jet}$ greater than 10 GeV
- > WithJet*: Events that have at at least one jet with $p_{\rm T}^{\rm jet}$ greater than 10 GeV

Rejection of jet-particles from 2PC

Simply rejecting all tracks within a R = 0.4 cone of the jet axis would introduce artificial structures along the $\Delta \phi$ in 2PC.

correlation. > Or, selecting event the two-particle co fragments of them

Plasma (QGP).

Multiplicity d

Conclusion: These measurements indicate that long-range correlations in pp collisions are only slightly affected when particles associated with hard or semi-hard processes in the event are removed.

- \triangleright The v_n are weakly varying with multiplicity.
- \triangleright The v_2 in *AllEvents* and *NoJet* sets are only slightly smaller than the Inclusive set.
- \triangleright The v_2 in the WithJet set are consistent with the Inclusive set within uncertainties.
- \triangleright The v_3 are <u>larger</u> in *AllEvents* and *NoJet*.
- > Indicate possible non-flow bias in Inclusive.

- \triangleright The v_n values are observed to be similar over the $p_{\rm T}^{\rm b}=0.5-3$ GeV range.
- \triangleright At higher p_T , the v_2 in *AllEvents* and NoJet sets are larger than the Inclusive.
- \triangleright The v_3 at higher p_T show considerably larger differences compared with
- > Indicate possible non-flow bias in Inclusive.

- ightharpoonup The $\Sigma E_{\mathrm{T}}^{\mathrm{FCal}}$, using independent sets of particles to determine the event activity, is less biased than multiplicity.
- The observed differences for v_2 and v_3 between the AllEvents /NoJet sets and the Inclusive set are similar to that observed in the multiplicity dependence.
- > The v2 in WithJet set are consistent with the other sets within uncertainties.

Conclusion: These measurements indicate that long-range correlations in pp collisions are only slightly affected when particles associated with hard or semi-hard processes in the event are removed.

> Reference: ATLAS-CONF-2020-018

> Support: The United States Department of Energy Grant DOE-FG02-86ER-40281

