Constraining the color-charge dependence of parton-medium interactions with photon-tagged jet RAA in Pb+Pb at 5.02 TeV with the ATLAS detector

Yeonju Go

University of Colorado Boulder on behalf of the ATLAS collaboration

Photon-tagged Jets vs. Inclusive Jets

- **Photon-tagged jets** jets produced in prompt photon $(pp \rightarrow \gamma + jet + X)$ producing events are largely produced by Compton scattering
 - \rightarrow quark-initiated jet dominant events

* note) colorless photons are not significantly modified by the QGP

- **Inclusive jets** gluon-initiated jet dominant events \bigcirc
- Comparing photon-tagged jet RAA and inclusive jet RAA, one can see sensitivity to

color charge

- Cross section for γ-tagged jets $oldsymbol{O}$ found out to be harder than that for inclusive jets
- One needs to consider the difference in p_T spectrum between y-tagged jets and inclusive jets when comparing R_{AA} of the two
- At p_T < ~100 GeV, MC generators (**Pythia**, Sherpa, Herwig) are compatible with the data within uncertainties
- At $p_T > ~100$ GeV, generators have higher cross section than the data
- If theory predictions use one of these MC generators, one needs to consider the difference in p_T spectrum between the data and predictions

Yeonju Go

Cross section

ATLAS-CONF-2022-019

Photon-tagged Jet R_{AA} with the ATLAS / Quark Matter 2022, April 4-10

- R_{AA} shows centrality ordering (e.g. more suppression in 0-10%, less suppression in 30-80%)
- At $p_T > 80$ GeV, slowly rising trend similar to that of inclusive jets
- At $p_T < 80$ GeV, decreasing trend because of photon p_T threshold of 50 GeV
- Two factors to consider besides the **different quark/gluon fraction** between the γ -tagged jets and inclusive jets...

1) $p_{\rm T}^{\rm jet}$ distribution difference

- within a simple model of fractional energy loss, this effect could cause the γ -tagged jet R_{AA} to be larger by ~0.1

2) Isospin and nPDF effect

- this effect may suppress the γ -tagged jet RAA by ~0.05-0.1 compared to the inclusive jet RAA depending on the pT

These two effects are expected to have opposite sign and similar magnitude

R_{AA} of γ-tagged jets are higher than the one of inclusive jets by ~0.15 in central collisions

Indicate more energy loss of gluon-initiated jets compared to **quark-initiated jets**

Yeonju Go

y-tagged Jet RAA

- \leftarrow it may arise from tuning free parameters to this previously available dataset
- lower value of g

The ratio of the RAA between γ -tagged jets and inclusive jets, $R_{AA}^{\gamma-jet}/R_{AA}^{inclusive jet}$

- mostly above unity evolving with p_T
- compatible with the SCET_G calculation within uncertainties
 - possibility to provide new constraints on the color charge dependence of energy loss in models

Yeonju Go

For y-tagged jets, the data are generally higher than the predictions, but are compatible with the SCET_G calculation using a

AA AA

Yeonju Go

Photon-tagged Jet RAA with the ATLAS / Quark Matter 2022, April 4-10

BACK UP

Analysis Selections

- **Photon triggers** used for $p_T > 20$ GeV (35 GeV) for Pb+Pb (pp) collisions $oldsymbol{O}$
- Centrality bins: 0-10%, 10-30%, 30-80% $oldsymbol{O}$
 - Centrality is characterized by the sum of the transverse energy in the forward calorimeters (ΣE_{T}^{FCal})
- **MC simulations** for pp collisions (including both direct and fragmentation photon processes) $oldsymbol{O}$
 - Pythia8 with the A14 tune and NNPDF 2.3 LO PDF set
 - Sherpa with the NNPDF 3.0 NNLO PDF set
 - **Herwig** with the MMHT2014lo PDF set
- events
- Photons:
 - $p_T > 50$ GeV/c (for the unfolding underflow, $p_T > 40$ GeV/c is used)
 - $|\eta| < 1.37, 1.52 < |\eta| < 2.37$
 - Identification using the "tight" shower shape cuts
 - Isolation condition of $E_{\rm T}^{\rm iso} < 3 \,{\rm GeV}$
 - $E_{\rm T}^{\rm iso} \equiv$ the sum of the transverse energy in calorimeter cells within $\Delta R < 0.3$ not including the photon itself
 - $E_{\rm T}^{\rm iso}$ is corrected for p_T and centrality to have a high (~90%) efficiency
- Jets:
 - Anti-k_T **R=0.4**
 - $p_T > 50$ GeV/c (for the unfolding underflow, $p_T > 40$ GeV is used)
 - |η| < 2.8
 - all jets with $\Delta \phi(\gamma, jet) > \pi/2$

MC simulations for Pb+Pb collisions: the generated events are overlaid at the hit level with a sample of minimum-bias Pb+Pb data

Photon-tagged Jet R_{AA} with the ATLAS / Quark Matter 2022, April 4-10

7

Subtract combinatoric background in jet p_T (event mixing technique) $oldsymbol{O}$

subtract combinatoric contribution by correlating signal photons to jets in minimum-bias Pb+Pb events

2) Subtract jets correlated with non-signal photon (photon purity correction)

- OrawPhoton = OsigPhoton * purity + ObkgPhoton * (1-purity)
 - \circ O_x is per-photon jet yield tagged with x photon (x = raw, signal and background photons)
 - purity is estimated using the data-driven double sideband method (Ref. JHEP 08 (2016) 005)

3) Unfold for jet p_T and photon p_T (2D) to correct for bin-to-bin migration \bigcirc arising from the finite detector resolution

- The iterative Bayesian method is used with the RooUnfold software package (Ref. arXiv: 1105.1160)
- The unfolding procedure also accounts for the finite reconstruction and selection efficiency of photons

RAA

Analysis Procedure

Systematic Uncertainties

Photon-related uncertainties

- 1. Energy scale 2. Energy resolution
- 3. Efficiency
- 4. Purity

Jet-related uncertainties

- 5. Energy scale 6. Energy resolution
- 7. Unfolding
- 8. Combinatoric background subtraction 9. Global uncertainty (T_{AA} and luminosity)
- The individual uncertainties are added in quadrature to determine the full uncertainties • For both cross-section and R_{AA} measurements, the jet energy scale uncertainties are dominant in almost the entire phase space

Yeonju Go

- Photon triggers are used for the analysis
- \rightarrow the triggers are more than 99% efficient in this region

Trigger Efficiency

The offline photon selections (>40 GeV) are far above the online threshold of the trigger (>20 GeV)

10

- Purity is estimated with double-sideband data-driven method $oldsymbol{O}$
 - signal leakage factor ($f^{i,MC}$) obtained from MC

- Photon Purity $oldsymbol{O}$
 - estimated in each p_T and centrality bins

 - increases quickly with p_T

Photon Purity

Double-sideband method

Photon-tagged Jet R_{AA} with the ATLAS / Quark Matter 2022, April 4-10

11

Inclusive Jet RAA

Inclusive jets are more suppressed than γ -tagged jets across centrality

Yeonju Go

