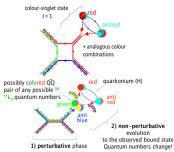
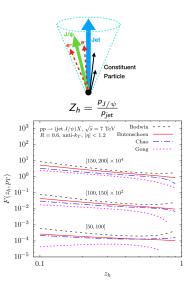
Quarkonium production in p+p collisions measured by the STAR experiment

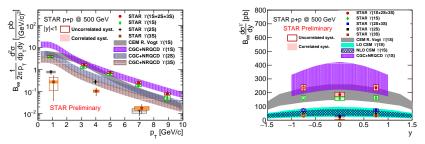
Leszek Kosarzewski for the STAR Collaboration

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

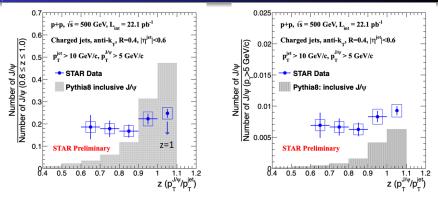

Quark Matter 4-10.4.2022, Cracow, Poland

This work was also supported by the grant LTT18002 of Ministry of Education, Youth and Sports of the Czech Republic.


Motivation


- Quarkonium measurements in p+p collisons are a tool to study their production mechanism
 - Color Singlet, Color Octet/NRQCD(+CGC), Color Evaporation Model

[P. Faccioli, Polarization in LHC physics, Course on Physics at the LHC 2014]


- Study of J/ψ production in a jet provides information about production mechanism and Non-Relativistic QCD (NRQCD) long-distance matrix elements (LDMEs) [Phys.Rev. Lett. 119 (2017) 032001]
 - Each LDME set gives different values of J/ψ fragmentation function vs. z (fraction of jet p_T carried by J/ψ)
 - Can distinguish between different sets of LDMEs

- $\Upsilon(nS)$ cross sections measured separately vs. p_T and y
- $\Upsilon(1S)$ data described well by Color Evaporation Model (CEM) model calculation of inclusive production [*Phys. Rev. C* 92, 034909 (2015)]
- Υ(nS) data overestimated by Color Glass Condensate+NRQCD calculation of direct production [Phys. Rev. Lett. 113, 192301 (2014)], [Phys. Rev. D 94, 014028 (2016)]
- NLO and LO Color Singlet Model (CSM) calculations for direct $\Upsilon(1S)$ (fraction of direct = 0.66) [Phys. Rev. D 81, 051502 (2010)] are disfavored by the STAR data

J/ψ production in a jet

- No significant dependence of J/ψ production on z, fraction of jet p_T carried by J/ψ for 0.6 $\leq z \leq 1.0$
- $\bullet\,$ Production of J/ψ within a jet is less isolated in the data than predicted by PYTHIA8
- Right: Normalized to measured J/ψ yield with $p_T > 5 \text{ GeV}/c$, which corresponds to $3.7\% \pm 0.3\%(stat.) \pm 0.2\%(syst.)$ of the integrated cross section [Phys. Rev. D 100, 052009 (2019)]
- \bullet Data show systematically higher probability of J/ψ production in jets than in PYTHIA8 for $p_T>5~{\rm GeV/c}$
- \bullet Ongoing analysis of 336.4 $\rm pb^{-1}$ 2017 data set

arY spectra in ho+ ho at $\sqrt{s}=500~{ m GeV}$

- STAR measured p_T and y spectra of individual $\Upsilon(nS)$ states
- CEM model calculation for inclusive $\Upsilon(1S)$ well describes the STAR $\Upsilon(1S)$ spectra
- CGC+NRQCD calculation for direct $\Upsilon(nS)$ states overestimates the data
 - Especially at low p_T
- CSM calculation for direct $\varUpsilon(1S)$ at LO and NLO disfavored by the $\varUpsilon(1S)$ data

J/ψ production in jets in p+p at $\sqrt{s}=500~{ m GeV}$

- Measured J/ψ z fraction distribution for jet $p_T>10\,{\rm GeV/c}$ and J/ψ $p_T>5\,{\rm GeV/c}$
- No significant dependence on z for 0.6 $\leq z \leq 1.0$
- $\bullet\,$ Larger measured fraction of J/ψ in jets than predicted by <code>PYTHIA</code>
- J/ψ is less isolated in the data than in PYTHIA