Study of identified hadrons in Au+Au collisions at $\sqrt{s_{NN}} = 27$ GeV using the STAR Detector at RHIC

Matthew Harasty
On Behalf of the STAR Collaboration
Quark Matter, Krakow. 6 April 2022

MOTIVATION

➤ Where are we on the QCD phase diagram?
➤ How does particle production change across centrality and rapidity?
➤ How does the chemical freeze-out temperature and baryon chemical potential change with centrality and rapidity?

Supported in part by
DATA AND METHODOLOGY

➤ Solenoidal Tracker at the Relativistic Heavy Ion Collider (STAR)
➤ Beam Energy Scan - II
➤ $\sqrt{s_{NN}} = 27$GeV Au+Au year 2018
➤ 200 Million events
➤ $V_z = [-30, 30]$ cm $V_r < 2.0$ cm
➤ Particle separation by dE/dx in TPC
➤ Particle separation by β^{-1} in barrel TOF
➤ $\eta \approx [-1,1]$ and 0-80% centrality
➤ π^\pm, K^\pm, p, and \bar{p}
(ANTI-) PROTON YIELDS

- Blast-Wave Fit to extract dN/dy
- Thermal production of p and \bar{p} at $y = 0$
- Participant protons stopped ($y = 3.4 \rightarrow 1.6$)
- THERMUS fit of π^\pm, K^\pm, p, and \bar{p} for measurement of μ_B
- $\Delta \mu_B \sim 25$ MeV for $\Delta y = 1$
- Centrality dependence expands measurement range in phase diagram
CHARGED KAON YIELDS

- m_T exponential fit to extract dN/dy
- Interpretation based on hadronic interaction:
 - K^- dominated by pair production of K^+ and K^-
 - 1/3 of K^+ from associated production
 $$NN \rightarrow N\Lambda K^+$$
- Interpretation based on thermodynamics:
 - Finite μ_S results in 1/3 excess of K^+ over K^-
 - THERMUS fit of π^\pm, K^\pm, p, and \bar{p} for measurement of μ_S
- Rapidity dependence of μ_S from shape of dN/dy of stopped participant protons
References