Beam energy and collision species dependences of photon-induced lepton pair production at STAR

Xiaofeng Wang (王晓凤)
For the STAR Collaboration
Shandong University (山东大学)
\(\gamma \gamma \rightarrow l^+ l^- \) Process

- Highly Lorentz-contracted charged nuclei produce electromagnetic fields (EM)

- Equivalent Photon Approximation (EPA): EM fields \(\rightarrow \) a flux of quasi-real photons

- 1934 Breit & Wheeler: “Collision of two Light Quanta”

- High photon density with highly charged nuclei \((\propto Z^2) \)
\[\gamma \gamma \rightarrow l^+ l^- \] in Peripheral Collisions

Observation of \(\gamma \gamma \rightarrow e^+ e^- \) in hadronic heavy ion collisions at STAR

- Energy dependence?
- Centrality dependence?
- Di-muon?
- Collision species dependence?
The Solenoid Tracker At RHIC (STAR) and PID

Time Projection Chamber (TPC): momentum and energy loss

Time Of Flight (TOF): velocity

TOF selection

Centrality: 80-100%

$\sigma_n = 54.4\text{GeV}$

Au+Au

$\Delta \beta (\mu)$

Au+Au 200GeV @STAR
Excesses above hadronic production are observed at low-p_T.

Lowest order EPA-QED predictions are consistent with observed excesses.

Energy dependence
54.4 GeV, 200 GeV

Centrality dependence
40-60%, 60-80%, 80-100%

Transverse Momentum Distribution

$\mu^+ \mu^-$ pairs

Similar excesses at low-p_T observed in the $\mu^+ \mu^-$ channel
Excesses (Data - Cocktail) are extracted

No vector meson observed ($\gamma\gamma \rightarrow e^+e^-$)

Excesses are well described by lowest order EPA-QED predictions
Invariant Mass Distribution at Low-$$p_T$$

$$\gamma\gamma \rightarrow \mu^+\mu^-$$

EPA-QED predicts different cross sections due to electron and muon mass difference

Excesses (Data - Cocktail) are extracted

Excesses are well described by lowest order EPA-QED predictions

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1}

Au+Au 200GeV @STAR

0<$$p_T^{\mu\mu}$$<0.10 GeV/c l$$y^{\mu\mu}$$l<0.8
0.18 $$p_\mu$$<0.30 GeV/c l$$p_\mu$$l<0.8

STAR Preliminary
Excess yield increase with beam energy

EPA-QED predicts similar energy dependence

\[\gamma \gamma \rightarrow e^+ e^- \]
Energy and Centrality Dependence of $\sqrt{\langle p_T^2 \rangle}$

$\gamma\gamma \rightarrow e^+e^-$

\[\sqrt{\langle p_T^2 \rangle} \] is sensitive to p_T broadening

$\sqrt{\langle p_T^2 \rangle}$ decreases from semi-peripheral to peripheral collisions

Initial state effect: Impact parameter dependence

Energy dependence(3.7σ compared to 200 GeV QED) and/or final state effect(1.8σ)

\[\sqrt{\langle p_T^2 \rangle} \] is sensitive to p_T broadening

Initial state effect: Impact parameter dependence

Energy dependence(3.7σ compared to 200 GeV QED) and/or final state effect(1.8σ)
Application: Constrain Charge Distribution

\[\gamma \gamma \rightarrow \ell^+ \ell^- \] can be used to constrain nucleus charge distribution at RHIC energy

STAR data compared to EPA-QED

Low energy scattering: R=6.38 fm, d=0.535 fm
R. C. Barrett and D. F. Jackson, Nuclear Sizes and Structure (Oxford University Press, 1977)

200 GeV vs 54.4 GeV: maybe due to energy dependence of charge distribution

Low-energy vs RHIC (3\sigma difference): maybe due to energy dependence of charge distribution and/or final state effect

Collision Species Dependence \((^9_{44}\text{Ru} + ^9_{44}\text{Ru}, ^{96}_{40}\text{Zr} + ^{96}_{40}\text{Zr})\)

\[\gamma\gamma \rightarrow e^+e^-\]

At very low \(p_T\) (< 0.15 GeV/c), \(e^+e^-\) pairs dominated by \(\gamma\gamma \rightarrow e^+e^-\)

Ratio is consistent with \(\left(\frac{44}{40}\right)^4\) at very low \(p_T\)

Initial EM field is different in Ru + Ru and Zr + Zr (~3\(\sigma\))

At \(p_T > 0.15\) GeV/c, hadronic production contributions to \(e^+e^-\) pairs are similar in Ru + Ru and Zr + Zr

Poster by Kaifeng Shen (04/06/22 6:30-7:30)
Collision Species Dependence \((^{96}\text{Ru} + ^{96}\text{Ru}, ^{94}\text{Zr} + ^{96}\text{Zr})\)

- At very low \(p_T\), \(J/\psi\) dominated by \(\gamma A \rightarrow J/\psi\)
- Ratio is consistent with \((\frac{44}{40})^2\) at very low \(p_T\)
- Initial EM field is different in \(\text{Ru} + \text{Ru}\) and \(\text{Zr} + \text{Zr}\) \((\sim 1.7\sigma)\)
- At \(p_T > 0.2\) GeV/c, hadronic production contributions to \(J/\psi\) are similar in \(\text{Ru} + \text{Ru}\) and \(\text{Zr} + \text{Zr}\)

\[\text{STAR Preliminary}\]
\[\text{Isobar (Ru+Ru)/(Zr+Zr), } \sqrt{s_{\text{NN}}}=200\text{ GeV}\]
\[\gamma + A \rightarrow J/\psi + X, |y|<1.0\]
\[J/\psi \rightarrow e^+e^- (M_{ee}: 3.0 - 3.2\text{ GeV/c}^2)\]

Data: 40-80%

\[\frac{44}{40}^2\text{ scaling}\]

Poster by Kaifeng Shen (04/06/22 6:30-7:30)
Collision Species Dependence \((^{96}_{44}\text{Ru} + ^{96}_{44}\text{Ru}, ^{96}_{40}\text{Zr} + ^{96}_{40}\text{Zr})\)

\[\gamma A \rightarrow J/\psi \]

\[J/\psi \text{ excess yield} \propto Z^2 \]

Photoproduced \(J/\psi\) yields seem to be independent of form factor and impact parameter.

Poster by Kaifeng Shen (04/06/22 6:30-7:30)
Summary

- Beam energy and centrality dependences of $\gamma \gamma \rightarrow l^+ l^-$ have been measured at STAR
 - Excess yield: **Increases with beam energy**
 - $\sqrt\langle p_T^2 \rangle$: Decreases with increasing impact parameter
 - $\sqrt\langle p_T^2 \rangle$: **Energy dependence** (3.7σ compared to 200 GeV QED)
 - Application: $\gamma \gamma \rightarrow l^+ l^-$ can be used to **constrain nuclei charge distribution at RHIC energy**

- Collision species dependence of $\gamma \gamma \rightarrow l^+ l^-$ and $\gamma A \rightarrow J/\psi$ have been measured at STAR
 - **Initial EM field is different** in Ru + Ru and Zr + Zr ($\sim3\sigma$ in $e^+ e^-$ ⊕ $\sim1.7\sigma$ in J/ψ)
 - Photon-induced J/ψ yield $\propto Z^2$