QM 2022

Contribution ID: 549 Type: Oral presentation

Collision species and beam energy dependences of photon-induced lepton pair production at STAR

Thursday, 7 April 2022 10:20 (20 minutes)

Ultra-strong electromagnetic field can generate a large flux of quasi-real photons arising from the Lorentz-contraction and the large electric charge (Z) of heavy nuclei colliding at ultra-relativistic speeds. These ultra-strong fields can be studied through dileptons (e^+e^- and $\mu^+\mu^-$) and vector mesons (J/ψ) produced via photon-photon and photonuclear processes, respectively, in which the photon flux is proportional to Z^2 . In particular, the photo-produced dileptons carry information about the strength and spatial distribution of the colliding fields. Therefore, they provide a novel tool to test the spatial and polarization dependent effects predicted by QED for vacuum birefringence and the Breit-Wheeler process.

In this talk, we present the first investigation of impact parameter and collision species dependences of dilepton and J/ψ photo-production in isobaric collisions ($^{96}_{44}Ru + ^{96}_{44}Ru$, $^{96}_{40}Zr + ^{96}_{40}Zr$) at $\sqrt{s_{\mathrm{NN}}} = 200$ GeV. The collision energy dependence of these photo-production processes is further studied in peripheral Au+Au collisions with measurements at $\sqrt{s_{\mathrm{NN}}} = 54.4$ GeV and 200 GeV. We discuss the physics implications of these results and compare them to models.

Primary author: STAR COLLABORATION

Presenter: WANG, Xiaofeng (Shandong University)

Session Classification: Parallel Session T09: Ultra-peripheral collisions

Track Classification: Ultra-peripheral collisions