New constraints for QCD matter from improved Bayesian parameter estimation

Jasper Parkkila1,2,3, Anna Onnerstad1,2, Seyed Farid Taghavi4, Cindy Mordasini1,4, Ante Bilandzic4, Dong Jo Kim1,2

1University of Jyväskylä, Department of Physics, Finland
2Helsinki Institute of Physics, University of Helsinki, Finland
3CERN, Experimental Physics Department, Geneva, Switzerland
4Dense & Strange Hadronic Matter Group, Technical University of Munich, Germany

Significant progress has happened in modeling heavy-ion collisions.

Color Glass Condensate + **Causal Hydrodynamics** + **Hadronic Gas Cascade**

The multi-stage phenomenological models contain 10 to 20 parameters,

Two most interesting ones are η/s and ζ/s.

It is essential to include independent new observables and improve the precision of the measurements.
New flow harmonic observables in Bayesian analysis

\[\frac{dN}{d\varphi} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos [n(\varphi - \psi_n)] \]

Flow harmonics, \((v_n, \psi_n)\), depend on the initial state parameters, transport coefficients \((\eta/s, \zeta/s, \ldots)\), ...

<table>
<thead>
<tr>
<th>Observable</th>
<th>Inputs of the analysis (e.g. (\rightarrow))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-harmonic observables [1, 2]</td>
<td>(v_2{2}, \ldots, v_7{2})</td>
</tr>
<tr>
<td>Symmetric cumulants [3]</td>
<td>NSC((2, 3)), NSC((2, 4)), NSC((3, 4))</td>
</tr>
<tr>
<td>Higher-order symmetric cumulants [4]</td>
<td>NSC((2, 3, 4)), NSC((2, 3, 5))</td>
</tr>
<tr>
<td>Symmetry plane correlations [2,5]</td>
<td>(\rho_{4,22}, \rho_{5,23}, \rho_{6,222}, \rho_{6,33})</td>
</tr>
<tr>
<td>Non-linear mode couplings [2,6]</td>
<td>(\chi_{4,22}, \chi_{5,23}, \chi_{6,222}, \chi_{6,33})</td>
</tr>
</tbody>
</table>

We use the same model, $T_{\text{ren}} + \text{VISH}(2+1) + \text{UrQMD}$ for Pb–Pb collision, as Ref. [1] to manifest the importance of including the new observables and improving the accuracy.

Significant improvement in uncertainties, especially in bulk viscosity.

The energy dependence of v_2.

- Deviation from simulation and data in NSC(2,4) and NSC(2,3,5).
- Poor agreement for v_6, v_7, v_8, v_9, especially v_8.
- Wrong energy ordering for $\rho_{6,222}$.
Higher harmonics, higher order observables have more sensitivity to η/s and ζ/s.

Summary: • Higher-order transport coefficients are very sensitive to the higher-order flow observables, revealing the importance of their precision measurements. • Including the latest flow harmonic measurements, we have improved the uncertainty of estimated values for η/s and ζ/s. • Despite using the new observables as inputs to extract model parameters, there are remaining discrepancies between model and experimental measurements.
Backup Slides
MAP Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Range</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(2.76 TeV)</td>
<td>Overall normalization (2.76 TeV)</td>
<td>[11.152, 18.960]</td>
<td>14.373</td>
</tr>
<tr>
<td>N(5.02 TeV)</td>
<td>Overall normalization (5.02 TeV)</td>
<td>[16.542, 25]</td>
<td>21.044</td>
</tr>
<tr>
<td>p</td>
<td>Entropy deposition parameter</td>
<td>[0.0042, 0.0098]</td>
<td>0.0056</td>
</tr>
<tr>
<td>σ_k</td>
<td>Std. dev. of nucleon multiplicity fluctuations</td>
<td>[0.5518, 1.2852]</td>
<td>1.0468</td>
</tr>
<tr>
<td>d_{min}^3</td>
<td>Minimum volume per nucleon</td>
<td>[0.8893, 1.5243]</td>
<td>1.23673</td>
</tr>
<tr>
<td>τ_{fs}</td>
<td>Free-streaming time</td>
<td>[0.03, 1.5]</td>
<td>0.71</td>
</tr>
<tr>
<td>T_c</td>
<td>Temperature of const. $\eta/s(T), T < T_c$</td>
<td>[0.135, 0.165]</td>
<td>0.141</td>
</tr>
<tr>
<td>$\eta/s(T_c)$</td>
<td>Minimum $\eta/s(T)$</td>
<td>[0, 0.2]</td>
<td>0.093</td>
</tr>
<tr>
<td>$(\eta/s)_{\text{slope}}$</td>
<td>Slope of $\eta/s(T)$ above T_c</td>
<td>[0, 4]</td>
<td>0.8024</td>
</tr>
<tr>
<td>$(\eta/s)_{\text{curve}}$</td>
<td>Curvature of $\eta/s(T)$ above T_c</td>
<td>$[-1.3, 1]$</td>
<td>0.1568</td>
</tr>
<tr>
<td>$(\zeta/s)_{\text{peak}}$</td>
<td>Temperature of $\zeta/s(T)$ maximum</td>
<td>[0.15, 0.2]</td>
<td>0.1889</td>
</tr>
<tr>
<td>$(\zeta/s)_{\text{max}}$</td>
<td>Maximum $\zeta/s(T)$</td>
<td>[0, 0.1]</td>
<td>0.01844</td>
</tr>
<tr>
<td>$(\zeta/s)_{\text{width}}$</td>
<td>Width of $\zeta/s(T)$ peak</td>
<td>[0, 0.1]</td>
<td>0.04252</td>
</tr>
<tr>
<td>T_{switch}</td>
<td>Switching / particlization temperature</td>
<td>[0.135, 0.165]</td>
<td>0.1595</td>
</tr>
</tbody>
</table>

\[
(\eta/s)(T) = (\eta/s)(T_c) + (\eta/s)_{\text{slope}}(T - T_c) \left(\frac{T}{T_c} \right)^{(\eta/s)_{\text{curve}}}, \quad \frac{(\zeta/s)(T)}{1 + \left(\frac{T - (\zeta/s)_{\text{peak}}}{(\zeta/s)_{\text{width}}} \right)^2}.
\]
MAP parametrization

ALICE PbPb

TRENTo+VISH(2+1)+UrQMD

\[
\begin{align*}
\text{dN}_{\text{ch}}/d\eta & \quad \text{100} \\
\text{p} & \quad \text{10} \\
\pi \times 0.5 & \quad \text{10} \\
K & \quad \text{10} \\
\text{Charged} & \quad \text{10} \\
\text{5.02 TeV} & \quad \text{10} \\
\text{2.76 TeV} & \quad \text{10}
\end{align*}
\]

\[
\begin{align*}
\text{Ratio} & \quad \text{0} \\
\text{Centrality (%)} & \quad \text{0} \\
\text{Centrality (%)} & \quad \text{0}
\end{align*}
\]
Posterior distribution

N(2.76 TeV) 14.1 ± 1.2
N(5.02 TeV) 20.2 ± 1.8

p 0.006 ± 0.002
w [fm] 0.8 ± 0.1

d [fm] min 1.27 ± 0.23
fs [fm/c] 0.89 ± 0.38
slope [GeV/s] 0.145 ± 0.014

Tc [GeV] 0.106 ± 0.030

crv [GeV/s] 0.159 ± 0.005

T switch [GeV] 1.30 ± 0.15

model sys 0.09 ± 0.09

Slope [GeV/s] 0.135 ± 0.013

Width [GeV] 0.043 ± 0.030

0.0 0.2 0.4