Poster Session 2 T07_1 #614

Space-time evolution of critical fluctuations in an expanding system

Azumi Sakai (Hiroshima Univ.)

azumi-sakai@hiroshima-u.ac.jp

Co-authors:

Koichi Murase (YITP, Kyoto Univ.)

Hirotsugu Fujii (Tokyo Univ.)

Tetsufumi Hirano (Sophia Univ.)

Introduction

Fig. QCD Phase Diagram

Search for the QCD Critical Point

Dynamical modeling of heavy-ion collisions Equilibrium: Infinite Chiral condensate σ (Fast mode)→Ignored Heavy-ion collisions: Finite Time-scale separation is unclear

 $\rightarrow \sigma$ could affect the critical dynamics

Purpose of study:

We construct dynamical model of critical fluctuations

- \rightarrow Coupling of Baryon number density n + Chiral condensate σ
- \rightarrow Relaxation of baryon diffusion current from causality

Analyze the effects on correlation of baryon number density \boldsymbol{n}

Model: coupled Langevin equations

0 🖗

-2

$$\frac{d(\delta\sigma)}{dt} = -\Gamma \frac{\delta F}{\delta(\delta\sigma)} + \tilde{\lambda}\nabla^2 \frac{\delta F}{\delta(\delta n)} + \xi_{\sigma}$$
$$\frac{\tau_R dV}{dt} + V = \tilde{\lambda}\nabla \frac{\delta F}{\delta(\delta\sigma)} + \lambda\nabla \frac{\delta F}{\delta(\delta n)} + \xi_n$$
$$\frac{d(\delta n)}{dt} = -\nabla \cdot V$$

 $\frac{\text{Fluctuation-dissipation relation}}{\langle \xi_i(x)\xi_j(x') \rangle} = 2T\gamma_{ij}\delta^4(x-x')$

 $\Gamma, \tilde{\lambda}, \lambda$: Transport coefficient *T* : Temperature

> D.T. Son, M.A. Stephanov, Phys.Rev. D70 (2004) 056001 H. Fujii, M. Ohtani, Phys.Rev.D70:014016,2004

 $\begin{array}{ll} \underline{Critical\ fluctuations}\\ Chiral\ condensate & \delta\sigma\equiv \bar{q}q-\langle \bar{q}q\rangle\\ Baryon\ number\ density & \delta n\equiv \bar{q}\gamma_0q-\langle \bar{q}\gamma_0q\rangle \end{array}$

Potential of free energy functional $F[\delta\sigma, \delta n]$

$$V(\delta\sigma,\delta n) = \frac{A}{2}\delta\sigma^2 + \frac{B\delta\sigma\delta n}{2} + \frac{C}{2}\delta n^2$$

15

10 5 Coupling term

New!

Diffusion equation violates causality Introduce relaxation time τ_R

δσ

to make the propagation speed finite

<u>Results</u>: Space-time evolution (1+1D)

Setups:	Without noise $\xi=0$
Temperature: $T(\tau) = T_0 \left(\frac{\tau_0}{\tau}\right)^{c_s^2}$	Conserved quantity $\delta \tilde{n} \equiv \tau \delta n$
Initial temperature: $T_0 = 220 \text{ MeV}$	Initial conditions:
Initial time: $\tau_0 = 0.6 \text{ fm}$	$\delta \sigma(n,\tau) = \frac{1}{2m^2} - \frac{\eta_s^2}{2m^2}$
Sound velocity: $c_s^2 = 0.15$	$00(\eta_s, \iota_0) - \frac{1}{\sqrt{2\pi w^2}}e^{-2w^2}$
Critical temperature: $T_c = 160 \text{ MeV}$	$\delta \tilde{n}(\eta_s, \tau_0) = 0$

$\delta \tilde{n} \neq 0$ at $\tau > \tau_0$

- $\rightarrow \delta \sigma$ affects δn evolution in $\tau \eta$ space (1+1D)
- $\tau_R = 0$ fm: $\delta \tilde{n}$ instantly diffuse to large η_s
- $\tau_R > 0$ fm: $\delta \tilde{n}$ diffuse at finite time

Signal propagates in a finite time by considering relaxation time τ_R

<u>Results</u>: Correlation evolution vs τ_R

Summary and Outlook

♦ We constructed a second-order model for critical fluctuations in 1+1D and analyzed the space-time evolution and correlation evolution

- Coupled Baryon density δn and Chiral condensate $\delta \sigma$
- Introduced relaxation time τ_R

Space-time evolution of $\delta\sigma$ and δn

- $\delta\sigma$ distribution affects δn distribution
- Signal propagates in a finite time by considering relaxation time τ_R

• Correlation evolution vs au_R

- Peak at $\Delta \eta_s \sim 0$
- Finite relaxation time τ_R causes a delay of response

Outlook

Analyze the effect on observables