New measurements in fixed-target collisions at LHCb

Jiayin Sun for the LHCb collaboration
INFN Cagliari

April 7th, 2022
Kraków, Poland
• The LHCb fixed-target program: SMOG

• **New SMOG results:**
 ‣ Charmonia production in \(p\)Ne collisions at \(\sqrt{s_{NN}} = 68.5 \) GeV [LHCb-PAPER-2022-014]
 ‣ \(D^0 \) and \(J/\psi \) production in PbNe collisions at \(\sqrt{s_{NN}} = 68.5 \) GeV [LHCb-PAPER-2022-012]
 ‣ Detached antiproton production in \(p\)He collisions at \(\sqrt{s_{NN}} = 110 \) GeV [LHCb-PAPER-2022-006]

• SMOG2 upgrade for Run3
SMOG

- SMOG: System for Measuring Overlap with Gas
- A noble gas (He, Ne, Ar) at \(\sim 2 \times 10^{-7} \) mbar pressure injected into the LHC vacuum around the LHCb interaction region
- Originally used to determine luminosity, since 2015 started to collect fixed-target collision data

- \(\sqrt{s_{NN}} = 69-110 \) GeV between SPS & RHIC
- \(-3.0 < y^* < 0\)
- Access nPDF anti-shadowing region
- Probe intrinsic charm content in the nucleon
- Inputs to astrophysics
SMOG datasets and results

New results:

- Charmonia production in pNe collisions at 68.5 GeV
- J/ψ and D^0 production in PbNe collisions at 68.5 GeV
- Detached antiproton production in pHe collisions at 110 GeV

New technical publication:

- A Neural-Network-defined Gaussian Mixture Model for PID with SMOG data (JINST 17 (2022) P02018)
- Centrality determination in heavy-ion collisions with the LHCb detector (arXiv:2111.01607)

Previous SMOG results:

Charmonia in pNe collisions at 68.5 GeV

- Charmonium production modified by initial and final state effects in proton-nucleus collisions
 - Modification of PDFs inside nuclei, CGC
 - Nuclear absorption, multiple scattering, energy loss
 - Comovers

- Dataset: collisions of 2.5 TeV protons and neon nuclei at rest $\Rightarrow \sqrt{s_{NN}} = 68.5$ GeV
- Luminosity 21.7 ± 1.4 nb$^{-1}$
- Center-of-mass rapidity coverage: $-2.3 < y^* < 0$
Charmonia in pNe collisions at 68.5 GeV

Differential J/ψ production cross-section

- HELAC-ONIA using CT14NLO and nCTEQ15 under predicts the data
- Good agreement with predictions with (1%) and without an Intrinsic Charm contribution [PRC103 (2021) 035204]
Charmonia in pNe collisions at 68.5 GeV

LHCb-PAPER-2022-014
In preparation

- Total J/ψ cross-section: extrapolation to full phase space using Pythia8+CT09MCS PDF, assuming forward-backward symmetry.
 - shows a power-law dependency with the center-of-mass energy $\sqrt{s_{NN}}$
- $\psi(2S)$ to J/ψ production ratio in good agreement with other proton-nucleus measurements at small values of target atomic mass number, A.
- The first measurement of $\psi(2S)$ to J/ψ production ratio with SMOG
D^0 and J/ψ in PbNe collisions at 68.5 GeV

- The first measurement of J/ψ and D^0 production in fixed-target nucleus-nucleus collisions at the LHC
- Search for the potential formation of quark-gluon plasma. Look for the onset of the transition from ordinary hadronic matter to the QGP.
- Suppression of charmonium $c\bar{c}$ bound states due to presence of the hot and dense medium
- Dataset: 2.5 TeV lead ions incident on neon nuclei $\Rightarrow \sqrt{s_{\text{NN}}}$ = 68.5 GeV
- PbNe centrality determined by energy in ECal

![Graph 1: LHCb preliminary D^0 distribution with peak at 5.7k entries]

![Graph 2: LHCb preliminary J/ψ distribution with peak at 550 entries]
D^0 and J/ψ in PbNe collisions at 68.5 GeV

Production ratio $J/\psi / D^0$ vs. p_T and y^*

- Depends strongly on p_T
- Compatible with no dependence on rapidity
- Suppression of $c\bar{c}$ bound states: measure charmonium together with the overall charm quark production
- The production of D^0 mesons reflects a large fraction of the overall charm quark production
- D^0 acts as a reference for studying quarkonium modification inside nuclear medium
D⁰ and J/ψ in PbNe collisions at 68.5 GeV

J/ψ / D⁰ ratio as a function of N_{coll}

• Assuming \(\sigma_{J/\psi} \propto \langle N_{coll} \rangle^{\alpha'} \) and \(\sigma_{D^0} \propto \langle N_{coll} \rangle \)

\[\Rightarrow \sigma_{J/\psi}/\sigma_{D^0} \propto \langle N_{coll} \rangle^{\alpha'-1} \]

• \(\alpha' = 0.82 \pm 0.07 \)

• Agree with measurements from proton-nucleus collisions by NA50

• \(J/\psi \) production affected by additional nuclear effects compared to \(D^0 \)

• No anomalous \(J/\psi \) suppression is observed that could indicate the formation of QGP
Detached antiproton in pHe collisions at 110 GeV

SMOG input to astrophysics

- PAMELA and AMS-02 measurements of \bar{p}/p in cosmic rays sensitive to a possible dark matter contribution
- Interpretation of \bar{p}/p measurements require precise \bar{p} production cross-section in spallation of cosmic rays in the interstellar medium (H and He)
- A first measurement of prompt \bar{p} production in pHe collisions at 110 GeV using SMOG

 - Extending the first measurement: antiproton from anti-hyperon decays (detached \bar{p})

- Detached \bar{p} can be distinguished from prompt \bar{p} in LHCb by the separation of their original vertex and the primary pHe collision vertex.
- Study strangeness production enhancement at $\sqrt{s} \sim 100$GeV

Uncertainty still dominated by XS

Martin Winkler at 2nd LHCb Heavy Ion workshop

LHCb-data would be very helpful
Detached antiproton in pHe collisions at 110 GeV

Exclusive measurement:

- Dominant anti-hyperon contribution from $\bar{\Lambda}$ exclusively reconstructed
- $\bar{\Lambda} \rightarrow \bar{p}\pi^+$: $(50.7 \pm 0.3) \times 10^3$ candidates

$$R_{\bar{\Lambda}} \equiv \frac{\sigma(pHe \rightarrow \bar{\Lambda}X \rightarrow \bar{p}\pi^+X)}{\sigma(pHe \rightarrow \bar{p}_{\text{prompt}}X)}$$

Inclusive measurement:

- Anti-hyperon $H = \Lambda, \Sigma, \Xi, \Omega$
- template fit of \bar{p} impact parameter:
 - Prompt, detached, secondary collisions from materials

$$R_H \equiv \frac{\sigma(pHe \rightarrow HX \rightarrow \bar{p}X)}{\sigma(pHe \rightarrow \bar{p}_{\text{prompt}}X)}$$
Detached antiproton in pHe collisions at 110 GeV

Exclusive
- All considered generators significantly underestimate the $\bar{\Lambda}$ contribution to the \bar{p} production

Inclusive
- Generators underestimate the anti-hyperon contribution to \bar{p} production

- The results confirm an increased H contributions compared to $\sqrt{s_{NN}} \sim 10$ GeV
- Indicate a sizable underestimation of detached \bar{p} contribution in most hadronic production models used in cosmic ray physics
SMOG2: Storage Cell for the gas upstream of the nominal IP (z in [-500, -300] mm) and precisely calibrated Gas Feed System.

- Gas density increased by up to two orders of magnitude ==> much higher luminosity
- More gas targets: H₂, D₂, He, N₂, O₂, Ne, Ar, Kr, Xe
- beam-beam and beam-gas separate luminous regions:
 ==> simultaneous pp-SMOG2 data-taking
 ==> large statistics

Physics:
- Intrinsic heavy-quark
- p-Gas collisions: nPDFs, gluon anti-shadowing at large x, cold nuclear matter effects
- Pb-Gas collisions: QGP formation, rapidity scan at lower energy, quarkonium sequential suppression
- Astrophysics

More details: talk by S. Mariani 06/04, 11:30
Conclusion

Thanks for your attention!

• The LHCb fixed-target program SMOG offers rich physics opportunities
• New results from SMOG data:
 • Charmonia production in pNe at 68.5 GeV: first $\psi(2S)$ result from SMOG
 • D^0 and J/ψ production in PbNe collisions at 68.5 GeV: first result from SMOG AB collisions
 • Detached \bar{p} production in pHe at 110 GeV: key inputs to astrophysics
• Promising SMOG2 upgrade in Run3
• And much more to come from the SMOG/SMOG2