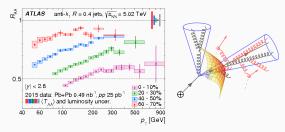


29TH INTERNATIONAL CONFERENCE ON ULTRARELATIVISTIC NUCLEUS - NUCLEUS COLLISIONS APRIL 4-10, 2022 KRAKÓW, POLAND

Combined constraints from jet and hadron quenching to \hat{q}

Weiyao Ke (LANL), in collaboration with Xin-Nian Wang (LBNL) Based on W Ke, X-N Wang JHEP 05, 041 (2021)


Hadron & jet probe different aspects of parton dynamics in the QGP

Probe modification/eloss of large-z partons

- Induced radiations that modify D(z) at $zE \gg T$.
- Energy loss from soft rad. & collisions, $\omega \sim$ T.

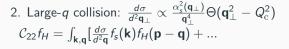
Single jet suppression

Sensitive to redistribution of "lost energy" by

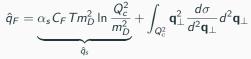
- Collisions, induced radiations.
- Collective excitations.

This work: - study hadron & jet within the LIDO parton transport model.

- a consistent transport parameter for jet and hadron from Bayesian analysis.
- basis for predicting other jet modifications: R-dependence, fragmentation, shape.


& many other predictions for, dijet T. Rinn ATLAS C, b-jet, γ -jet S. Araya, ATLAS C Y. Go, ATLAS C

Method: LIDO transport model approach for hadron and jet


Hard parton transport
$$f_H = f(t, x, p)\Theta(p \cdot u > 4T)$$
, $f_s = e^{-p \cdot u/T}$

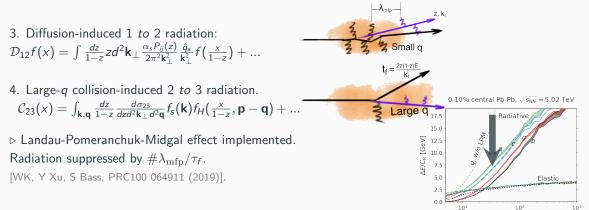
 $\begin{array}{ll} \displaystyle \frac{df_H}{dt} & = & \Theta(p \cdot u > 4T) \left\{ \mathcal{D}f_H + \mathcal{D}_{12}f_H \longrightarrow \mbox{ small-}q \mbox{ diff.-induced rad.} \\ & \mathcal{C}_{22}f_H + \mathcal{C}_{23}f_H \right\} \longrightarrow \mbox{ large-}q \mbox{ coll.-induced rad.} \end{array}$

1. Soft diffusion¹: $\mathcal{D} = -\eta \nabla_p - \frac{\hat{q}_s}{2} \nabla_p^2$

Combine to the jet transport parameter

¹In J. Ghiglieri, G. D. Moore, D. Teaney JHEP 03, 095(2016), separation requires $m_D \ll Q_c \ll T$. we take $Q_c = 2m_D$

Method: LIDO transport model approach for hadron and jet


Hard parton transport $f_H = f(t, x, p)\Theta(p \cdot u > 4T)$

 $\frac{df_H}{dt} = \Theta(p \cdot u > 4T) \{ \mathcal{D}f_H + \mathcal{D}_{12}f_H \longrightarrow \text{small-}q \text{ diffusion \& diff.-induced rad.}$

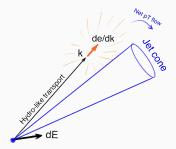
 $\mathcal{C}_{22}f_H + \mathcal{C}_{23}f_H \} \longrightarrow \text{ large-} q \text{ collision } \& \text{ coll.-induced rad.}$

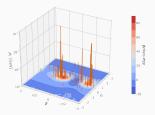
E[GeV]

3

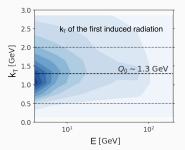
Method: A model for collective excitation induced by energy loss

• Energy-momentum deposition to soft sector:

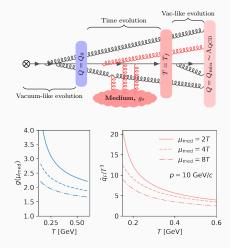

$$\frac{d\delta p^{\mu}}{dt}(t,x) = \int_{\mathbf{p}} \Theta(p \cdot u < 4T) p^{\mu} \frac{d}{dt} f_{H}(t,x,p)$$


• An ideal-hydro response:

$$\frac{de}{d\Omega_{k'}} = \frac{\delta p^0 + \hat{k}' \cdot \delta \vec{p}/c_s}{4\pi}, \quad \frac{d\vec{p}}{d\Omega_{k'}} = \frac{3(c_s \delta p^0 + \hat{k}' \cdot \delta \vec{p})\hat{k'}}{4\pi}$$

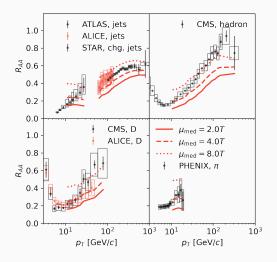

• Freeze-out to massless particles w/ radial flow v_{\perp} \Rightarrow corrections to momentum density in the cone:

$$\begin{array}{lll} \frac{d\Delta p_T}{d\phi d\eta} & = & \int \frac{3}{4\pi} \frac{\frac{4}{3}\sigma u_\mu - \hat{p}_\mu}{\sigma^4} \delta p^\mu(\hat{k}) \frac{d\Omega_{\hat{k}}}{4\pi} \\ \sigma & = & \gamma_\perp \left[\cosh(\eta - \eta_s - \eta_{\hat{k}}) - v_\perp \cos(\phi - \phi_{\hat{k}})\right] \end{array}$$



- Medium effects take place in a more restricted \boldsymbol{k}_{\perp} region:
 - Collisions $|\mathbf{k}_{\perp}| \sim m_D = 0.4...1.2$ GeV.
 - Induced radiation $|{\bf k}_\perp| \sim 1$ GeV.
- A "sudden" transition from DGLAP to transport at Q_0 .
 - A reasonable $Q_0^2 \approx \langle \mathbf{k}_{\perp}^2 \rangle = \int_{t_0}^{\tau_f} \hat{q}(t) dt \propto t_0 T_0^3$ in fast-expanding medium.
 - Q₀: wealy energy dependnce; change in different medium.

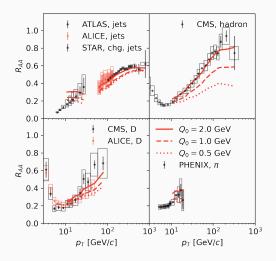
Systems	Pb-Pb 5 TeV		Au-Au 0.2 TeV	Xe-Xe 5.44 TeV
	0-5%	40-50%	0-5%	0-5%
$5t_0 T_0^3 [\text{GeV}^2]$	1.1	0.55	0.46	0.96



Objective: determine "jet-medium coupling g_s " or "jet transport parameter \hat{q} ".

Uncertainties:

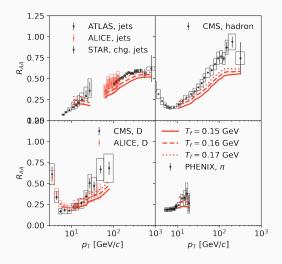
- 0.5 < Q₀ < 2.0 GeV: separates vacuum-like and transport evolution.
- $0.15 < T_f < 0.17$ GeV: color source = 0 for $T < T_f$.


•
$$0.7\pi T < \mu_{\text{med}} < 4\pi T$$
: controls in-medium g_s :
$$\frac{g_s^2(\mathbf{k}_{\perp})}{4\pi} = \frac{4\pi}{9} \ln^{-1} \left[\frac{\max{\{\mathbf{k}_{\perp}^2, \mu_{\text{med}}^2\}}}{\Lambda^2} \right]$$

Experimental data:

[STAR charged jet: PRC 102, 054913(2020)] [ALICE jet: PRC 101 034911(2020)] [ATLAS jet: PLB 790 108-128(2019)] [CMS D: PLB 287 474-496(2018)] [CMS h: JHEP 04, 039(2017)] [PHENIX π: PRC 87, 034911(2013)]

Changing the coupling strength by varying $\mu_{\rm med} = 2T, 4T, 8T~{\rm GeV}$

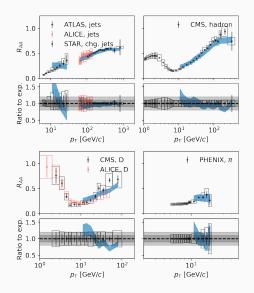


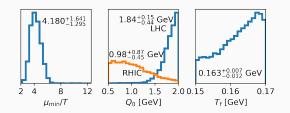
Experimental data:

[STAR charged jet: PRC 102, 054913(2020)] [ALICE jet: PRC 101 034911(2020)] [ATLAS jet: PLB 790 108-128(2019)] [CMS *D*: PLB 287 474-496(2018)] [CMS *h*: JHEP 04, 039(2017)] [PHENIX π: PRC 87, 034911(2013)]

Test the variation of $Q_0 = 0.5, 1.0, 2.0$ GeV.

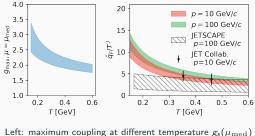
- Light hadron R_{AA} are very sensitive to Q_0 .
- Jet and heavy-flavor *R_{AA}* at the LHC energy are the least sensitive.




Experimental data:

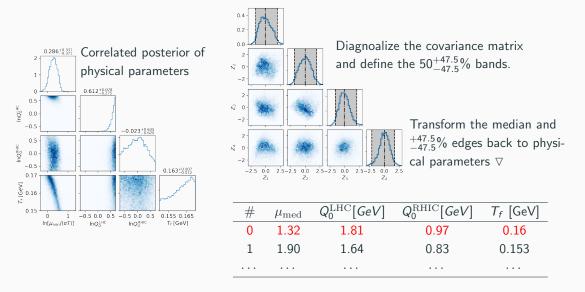
[STAR charged jet: PRC 102, 054913(2020)] [ALICE jet: PRC 101 034911(2020)] [ATLAS jet: PLB 790 108-128(2019)] [CMS *D*: PLB 287 474-496(2018)] [CMS *h*: JHEP 04, 039(2017)] [PHENIX π: PRC 87, 034911(2013)]

Change $T_f = 0.15, 0.16, 0.17$ GeV. \Leftrightarrow effectly change color density near T_c .

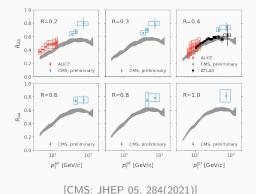

Results: Bayesian analysis of μ_{med} , Q_0^{LHC} , Q_0^{RHIC} , T_f

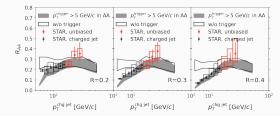
- $Q_0^{\rm LHC}$ varies independently from $Q_0^{\rm RHIC}$. $Q_0^{\rm LHC} > Q_0^{\rm RHIC}$ is consistent with the expectation from $T_0^{\rm LHC} > T_0^{\rm RHIC}$.
- Favors higher T_f than the pseudo-critical T_c .
- Running of g_s in medium saturates around $\mathbf{k}_{\perp} > \mu_{\mathrm{med}} \approx 4.2 T$ (or $1.3 \pi T$).

Results: jet-medium coupling g and jet transport parameter \hat{q}


Right: \hat{q} at p = 10 and 100 GeV for a quark.

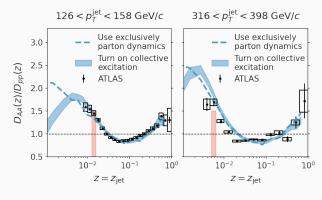
Compared to [JET Collab: PhysRevC.90.014909 (2014), JETSCAPE : PRC 104, 024905 (2021)] using inclusive hadrons.


- Results consistent with JET collaboration at high p.
- Higher than the recent JETSCAPE Collaboration analysis. Possible reason: JETSCAPE include medium corrections to the DGLAP stage ($k_{\perp}^2 > Q_0^2$)

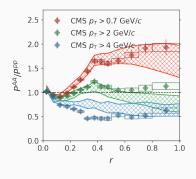

"Representative parameter sets" for the study of other observables

To make "quick" predictions: we defined central + error parameter sets

Test the transport of energy: cone-size dependence of jet R_{AA}



 \triangle Unbiased region (red) are in sensitive to the high- p_T hadron trigger. The triggering bias is also understood from the simulation. [STAR: PRC 102, 054913(2020)]

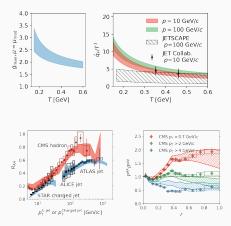

- LHC: LIDO predicts R_{AA} inreased by 10% from R = 0.2 to R = 1.0 at $p_T^{\text{jet}} = 500$ GeV.
- RHIC: Weak *R*-dependence in the unbiased region. Triggering bias well understood from simulation.

Test the transport of energy: fragmentation function

[ATLAS: PRC 98, 024908(2018)]

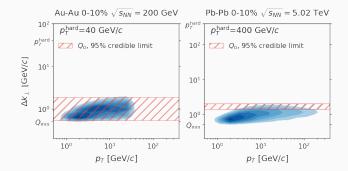
- Calcualtions that *treats everything with partonic dynamics* well describes the fragmentation at $\overline{zp_T^{\text{jet}} > 2}$ GeV (red bands).
- Use collective excitations to redistribution soft particles improves at $p_T \lesssim 2$ GeV.

[CMS: JHEP05, 006(2018)]


 \triangleleft Jet shape with different minimum hadron p_T

- Energy is shifted to particles at lower p_T and larger r.
- Discrepancy appears within the cone for $p_{T,cut} = 4 \text{ GeV}$
 - Can this be fixed by fine-tuning of parameters?
 - Suggest missing physics? Such as coalescence shifting intermediate-p_T hadrons to higher p_T.

Summary and outlook


- Jet and hadron quenching are sensitive to different aspects of parton dynamics.
 - Hadron: total energy loss.
 - Jet: redistribution of the lost energy. Require a modeling of collective excitation.
 - Jet R_{AA}: less dependent on the separation scale between vacuum-like evolution & transport equation.

- Extract g_s/\hat{q} from jet (R = 0.4) and hadron (h/D) R_{AA} at RHIC and LHC central AA collisions. \Rightarrow
- The resulting jet cone-size dependence is weak. Undershoot CMS data; consistent with STAR data.
- The redistribution of low momentum particles around the jet tested with fragmentation fucntion and jet shape.

Questions?

A consistency check: compare $Q_0^{\rm RHIC}$ and $Q_0^{\rm LHC}$ to the medium k_{\perp}

- Compare the radiative \mathbf{k}_{\perp} distribution with the separation scale Q_0 .
- At LHC: most in-medium activity happens below $Q_0^{\rm LHC}$.
- At the RHIC, $Q_0^{\rm RHIC}$ is comparable to typical \mathbf{k}_{\perp} .