

Contribution ID: 526 Type: Oral presentation

Combined constraining power of jet and hadron quenching on the jet transport parameter

Thursday, 7 April 2022 17:30 (20 minutes)

We found that collisional and radiative processes affect hadron and jet R_{AA} with different p_T dependence. It is then interesting to analyze the combined constraining power from both jet and hadron quenching to the jet transport parameter \hat{q} .

We conduct the study with the improved transport model (LIDO), including elastic and radiative processes, and a simple treatment of jet-medium response. The model only applies in the ''transport regime": hard partons with virtuality less than a characteristic momentum broadening scale $Q^2_{\rm med} \approx \langle \Delta k_t^2 \rangle$ in a medium with temperature greater than $T_f \approx T_c$. \hat{q} is determined by a temperature dependent jet-medium coupling $g_s(\mu\pi T)$.

We used a Bayesian analysis to determine the temperature and momentum dependence using hadron (light and heavy) and R=0.4 jet R_{AA} at RHIC and LHC for the first time [1]. Experimental uncertainty and ambiguity from μ , $Q_{\rm med}$ and T_f are propagated to the final \hat{q} . Then, we made predictions with quantified uncertainty to the jet-cone-sized dependence of R_{AA} , modified jet shape, and fragmentation functions.

[1] Weiyao Ke and Xin-Nian Wang JHEP 05 (2021) 041

Primary authors: KE, Weiyao (Los Alamos National Laboratory); WANG, Xin-Nian (Lawrence Berkeley National Lab. (US))

Presenter: KE, Weiyao (Los Alamos National Laboratory)

Session Classification: Parallel Session T04: Jets, high-pT hadrons, and medium response

Track Classification: Jets, high-pT hadrons, and medium response